

東京工科大学

博士学位論文

Remote Detection Method for Operating

Environment in Cyber Security Attack and

its Countermeasures

サイバーセキュリティ攻撃における

動作環境の遠隔検出法とその対抗策

平成 28年 9月

Noor Afiza Binti Mat Razali

Abstract

Virtual machines (VMs) have evolved from just being able extend desktop

and server management to being used as security systems to help identify malware

and other security platform detection systems. With the rapidly expanding usage of

mobile devices, VMs are now commonly being used as emulators for scanning and

detecting malware intrusion that are embedded in mobile applications. This is

largely due to the constrained resources in mobile devices such as processing power,

memory etc., that prohibit high end malware scanners to be executed in mobile

devices. However, scanning and detecting malware processes using VMs may cause

serious security threats to the end users when malware can detect its current

running environment, it may change its behavior in such a way that it doesn’t

perform malicious operations if it detected that it is running on VM environment as

an emulator.

In this dissertation, a proposal for network timestamping could be used as

a potential tool to remotely detect operating environment changes that manipulate

system processes and files to minimize the impact and reduce the security threats.

This research shows that operating environment could be remotely detected by

using IP timestamping information in network packets. The proposed method and

process is to utilize successive timestamps to track how many times identical

timestamps are stamped between the packets. There are differences between the

numbers of successive identical timestamps replied from the VM environment and

that of the real machine environment.

This research has differentiated and detected the target operating

environment using the proposed method. A countermeasure technique to disguise

IP timestamps characteristic from real machine such that it shows similar IP

timestamp patterns as the VMs is proposed. By using this technique, malware may

not be able to differentiate between a real machine and VMs. In the case of mobile

devices, meanwhile the identical timestamps are frequently stamped for Android

installed on VM environment; identical timestamps are never stamped for Android

on real mobile device environment.

One potential usage of the method is by implementing it into video

streaming application that hide the actual purpose of the application in detecting

target machine operating environment using the method. For future work, more

characteristic patterns need to be obtained and be used in proposing more

comprehensive mitigation. The remote detection method and relationship with

malware behavior could be implied in bigger framework during security policy

implementation to avoid cyber security attack by taking consideration of malware

behavior could be change based on the detection of the operating environment.

i

Contents

 Page

Chapter 1: Introduction

1.1. Background…………………………………………….…………………….. 1

1.2. Research Objectives….......................................……….…………….…… 5

1.3. Problem Statement and Significance of Research ……………………... 6

1.4. Summary of Chapter….…………………………….…………………...….. 11

Chapter 2: Literature Reviews

2.1. Overview …….........................…………………………....………….……… 12

2.2. Cyber Security and Cyber Threats……………………....………….…….. 14

2.3. Malware.. 16

2.4. Virtualization…….. 17

2.5. Network Timestamps... 20

2.6. Overview of Android Operating System.. 20

2.7. VM Operation Environment Detection Methods……………………….... 22

2.8. Previous Works... 25

2.9. Concluding Remarks... 26

ii

Chapter 3: Research Proposal

3.1. Overview... 28

3.2. Method in Determining Network Timestamps Different........................ 29

3.3. Experiments Environment.. 32

3.4. Analysis Method.………………………………………………………………. 33

3.5. Concluding Remarks.. 35

Chapter 4: Vulnerability Analysis using Network Timestamps

 in Full Virtualization

4.1. Overview... 36

4.2. Experiments Environment.. 38

4.3. Experimental Results.. 41

4.4. Concluding Remarks... 44

Chapter 5: Proposed Countermeasure for Virtual Machines Detection

 Methods Using IP Timestamps Pattern Characteristic

5.1. Overview... 46

5.2. Proposed Remote Detection method and Countermeasure..................... 47

5.3. Experimental Design and Measurement Methodology........................... 50

5.4. Data Analysis.. 52

5.5. Modification of Delay in Real Machine Environment............................. 55

5.6. Considerations... 57

5.7. Concluding Remarks... 58

iii

Chapter 6: Characteristic Patterns of Timestamps from Android

 Operating System on Mobile Device and Virtual Machine

6.1. Overview... 60

6.2. Experimental Environment... 62

6.3. Limitations.. 64

6.4. Results Analysis..….. 65

6.5. Concluding Remarks.. 71

Chapter 7: Discussion and Conclusion .. 74

7.1. Discussion and Conclusion... 74

7.2. Challenges and Limitations... 81

7.3. Future works... 81

Acknowledgments.. 83

References…... 85

List of Publications.. 95

Award……... 97

iv

List of Figures

 Page

Figure 1: Types of hypervisor... 19

Figure 2: IP header... 21

Figure 3: ICMP timestamp/timestamps reply message.................................. 21

Figure 4: Android system architecture…………………................................... 22

Figure 5: Virtual network path……………………………………………………. 24

Figure 6: Packet structure……………………………………………................... 31

Figure 7: General network settings for experiments…………….…………….. 32

Figure 8: Points that expected to show time discrepancies between IP

 and ICMP timestamps in VM …………….…………….……….…….. 33

Figure 9: Points that expected to show timestamps discrepancies for

 successive packets in VM……………………………………………….. 34

Figure 10: Experimental environment set up for real machine

 and 2 VMs……………………………………………………………..….. 39

Figure 11: Count for same timestamps reply for real machine, VirtualBox

 and VMWare……………………………………………………………... 43

Figure 12: Proposed modification technique…………………………………...… 49

Figure 13: Experimental environment set up for real machine and 3 VMs….. 51

Figure 14: Analysis of IP timestamp behavior pattern of target machines

 in real machine, Xen, VirtualBox and VMWare……………………. 54

Figure 15 (a): Technique to match IP timestamp behavior of Xen…………… 56

v

Figure 15 (b): Technique to match IP timestamp behavior of VirtualBox........ 56

Figure 15 (c): Technique to match IP timestamp behavior of VMWare………. 57

Figure 16: Experimental environment for Android OS on mobile device and

 Android as emulator in VMs…………………………………………… 62

Figure 17: Timestamps distribution collection mechanism………………….…. 63

Figure 18 (a): Android Ice Cream sandwich 4.0.4 ……………………………….. 67

Figure 18 (b): Android Jelly Bean 4.2.2…………………………………………….. 67

Figure 18 (c): Android KitKat 4.4.4.……………………..………………………….. 68

Figure 18 (d): Android Lollipop 5.0.2…………………..……………………….…… 68

Figure 19: Timestamps difference distribution for 4 versions of Android…….. 69

Figure 20: Timestamps differences when Android installed as emulator on

 different types of VMs……………………..……………………………… 70

Figure 21: IP and ICMP timestamps differences for 4 versions of Android…… 71

vi

List of Tables

 Page

Table 1: Anticipated experiment results for IP and ICMP timestamps

 reply.. 35

Table 2: Experiment environment for real OS... 39

Table 3: Experiment environment for VMWare.. 40

Table 4: Experiment environment for VirtualBox.. 40

Table 5: Portion of collected IP timestamp information.................................. 42

Table 6: Percentage of same timestamps that were stamped............................ 43

Table 7: Portion of collected IP timestamp information.................................. 53

Table 8: Percentages of identical IP timestamps for real machine

 and VM ... 54

Table 9: Mean number of packets with the same timestamps........................... 55

Table 10: Portion of collected IP And ICMP timestamp information............. 66

1

CHAPTER 1

Introduction

This chapter briefly introduces the background, the objectives, significance of this

research and the summaries of each chapter of the dissertation.

1.1. Background

Computing technology is continually enhancing nearly all aspects of how

businesses are done and the personal life of humans. It becomes an extension of the

individual, making environment smarter, contextually aware, and better connected.

Devices are also becoming smarter and more connected, and businesses are building

deeper real-time connections with their suppliers, partners, governments and

customers. This enables the collection and selectively sharing vast amounts of data.

Device will continue to grow in volume and variety. Forecast for connected devices

by 2020 are 200 billion and climbing [1]. Data sharing also made easier with cloud

computing.

Cloud computing has become the new paradigm in networked computing and

it has been identified as the utility after electricity, water, gas and telephone [2].

Cloud computing is a computing technique which provides the options for sharing

and renting of storage infrastructure, computing services, software, applications

customization and many more from remote platforms [3]. It offers organizations,

governments and individuals with a cost-effective utility by delivering software and

services over the Internet [4]. The basic principal behind resource sharing and

delivering scalable services in cloud computing is virtualization [5]. Thus, making

virtualization as one of the important pillars for cloud computing. Virtualization

technologies allow multiple operating systems and applications run on the same

machine that resulted on effective time and low cost for deployment.

Meanwhile, mobile devices are rapidly emerging as popular appliances that

are being used by consumers due to its mobility and easy access to the Internet,

2

especially through the usage of Wi-Fi facilities. Android is widely used as one of the

operating systems in mobile devices. According to Gartner Report [6], the Android

OS’s market share was 79% in August 2013 and it will keep increasing. Due to the

advancement in mobile device technologies, the latest mobile devices are now able

to perform many of the operations that had been exclusively done on PCs.

With the high dependencies of computing technologies in the current world

scenario and the outburst usage of personal mobile devices that are utilizing the

easy connectivity to cyberspace, the protection of sensitive and valuable information

assets is becoming more challenging [7]. While most organizations, governments

and personal users deployed security measures, the number of cyber security

attacks incidents continue to increase and becoming an ever-increasing threat for

organizations, governments and personal users around the world [8]. Moreover,

mobile devices use the same architecture as traditional computers; thus they have

the same vulnerabilities and security issues faced by personal computers [9].

Especially, since Android is an open, programmable software framework that

essentially provided the attackers with the inside knowledge of the platform.

Furthermore, mobile devices such as smartphone are constrained by their limited

resources, i.e., processing power, battery power, and lack of storage, which prevents

the integration of advanced security monitoring solutions that work with traditional

personal computers. In recent studies, it was found that in 2011, 96 percent of

smartphones and tablets do not have the necessary security software [10]. This

increases the vulnerability of typical mobile device to critical attacks that can make

the mobile devices unusable.

A breach in information protection could impact severely to the

organizations, such as loss of profit, trusts, reputation and loss of lives if such

breach occurred at any government critical infrastructures [11, 12]. Majority of the

attackers are also driven by monetary motivation by selling or leveraging stolen

sensitive or confidential financial information from personal individuals [13], such

as credit cards and online bank accounts information. The stolen information cost

billions of US Dollars of lost every year [14].

3

Hence, research in cyber security is a very important field that will provide

the information, knowledge and protection for the organizations, governments and

even individuals against those attacks from external or internal malicious

attackers.

This dissertation studied one component of the security vulnerabilities,

which is the remote detection of operation systems that could be exploited by the

attackers. Remote detection of running environment could be exploited by malware

by changing its behavior in different environments, especially upon detecting

virtual environment that could be used as deception environment such as honeypot.

This could lead to more vulnerability in the cyber security because amount of

malware that harm or compromise user privacy has increased dramatically [15].

Related work that had been done by other researchers, [16] and [17] on

virtual environment detection are focusing on differentiating the network behavior

between virtual machine (VM) and real machine using timestamp. In the studies,

the real machine environment was only limited to desktop machine without taking

into consideration mobile devices. This created gap in the research area since in the

current world scenario, mobile devices are becoming the main devices that are being

used by organizations in daily operations.

In this dissertation, research was done by taking into consideration the

current actual IT implementation in organizations. The main focus is on remote

detection method using network timestamps to differentiate the operating

environment on high performance machine such as servers that mainly host VMs

and on mobile devices that are normally equipped with limited resources such as

processing power. This research aims to validate the applicability of the remote

detection method as a potential vulnerability in cyber security attack.

Differentiation of operating environment, either they are VM, real machine or

mobile device become very important because of the significant growth in the

popularity of smart phones with seamless interconnectivity and increasing number

of available mobile apps downloaded in smart phones.

This research contributes to the new knowledge on the remote detection of

operating systems using the network timestamps analysis characteristic patterns in

4

recent technology scenario, which includes mobile devices. Base on the

characteristic pattern obtained from this research, countermeasure was proposed to

hide the differences observed and this research serves as initiative in improving the

cyber security that focusing on remote detection of operating systems using network

timestamps.

For this research, experiments were conducted in Kinoshita Lab at Tokyo

University of Technology to obtain results from the utilizations of IP and ICMP

timestamps characteristic as a method for remote detection of operating

environment. The results from the studies had shown that the IP and ICMP

timestamps characteristic could be used to remotely distinguish the running

operating system on VMs, real physical machines and mobile devices. This research

also proposes a countermeasure to disable the remote detection method between

VM and real machine by hiding the timestamps differences.

Previous work by Kohno [16] highlighted the potential of remote detection

method by using network timestamps. Then, work by Shimamura [17] explored on

characteristic pattern, based on differences between IP and ICMP timestamps in

one packet. In this dissertation, in order to determine the characteristic pattern of

network timestamps which are focused at IP and ICMP timestamps in various

environments, characteristic patterns as following are being used as the method of

analysis:

1) Differences between 2 successive timestamps in the replied packets

2) How many times identical timestamps was stamped between the packets

This research explores remote detection method by using characteristic

pattern differences between IP and ICMP timestamps in two measurements

mentioned above and also validate remote detection method by using characteristic

pattern differences between IP and ICMP timestamps that proposed in [17] in

current technology scenario. This dissertation provides the initial finding for

characteristic patterns on how network timestamps differences in of 2 successive

timestamps and how many same timestamps stamped in the packets could be used

as a remote detection method. This dissertation also serve as the research that

highlight the characteristic patterns for remote detection that encapsulate the need

5

to study of the recent IT scenario that have machines that are improving rapidly in

term of performance but at the same time, mobile devices with limited performance

such as mobile devices are also being widely used.

Experimental procedure for this dissertation started with experiments to

determine characteristic pattern in fundamental VM technologies using full

virtualization technology using popular virtualization products for open platforms

i.e., VMWare, Oracle VirtualBox and Xen. Next, based on the characteristic pattern,

countermeasure was proposed and the validations experiments of the

countermeasure were done. Finally, to determine the characteristic pattern for

mobile devices, experiments using Android as mobile operating system were

executed. These experiments aimed to validate current network timestamp

behavior of Android. It was also to determine the possibility of wide application of

remote detection method in Android as running environment. This could contribute

to new knowledge in analyzing the remote detection method of mobile device

environment. Discussion on the proposed countermeasure for android is also

included in the dissertation on how it could be implemented to provide a basic

solution for the remote detection method by disabling the different in network

patterns of VM and real machine including the mobile devices in the same

environment

This research contributes to the new knowledge of the analysis and

countermeasure of remote detection of operating systems using the IP and ICMP

timestamps characteristic for distinguishing operating systems running on virtual

machines, real physical machines and mobile devices. It is hoped that the results

from this research could be utilized for improving the protection of sensitives and

valuable information assets.

1.2. Research Objectives

The objective of this research is to study, validate and analyze the potential

of using network timestamp, which are IP and ICMP timestamp characteristic, as a

method to remotely distinguish operating environment running on VM, real

physical machine and mobile device. This research argues that such remote

6

detection method could become critical vulnerability for cyber security in an event

of attacks by malicious attackers. Experiments were conducted to determine and

analyzed the characteristic patterns of IP and ICMP timestamps on various

machines. This research hypothesized that based on the analyzed characteristic

patterns of IP and ICMP timestamps, it could remotely distinguish the operating

environment on VM and non-VM environment including mobile device.

A proposed countermeasure that could be implemented in order to disable

the remote detection between VM and real machine environment will also be the

objective of the research. The countermeasure shall become one of the basic

methods that could be extended in the future research in this area.

1.3. Problem Statement and Significance of Research

Building transparent VM are still an ongoing progress and more researches

are required to make VM indistinguishable from non VM environment and mobile

device. Currently, researches showed that malware are able to exploit the

vulnerability of detecting the target operating environment, specifically detecting

VM environment [18]. By detecting VM environment, these malware would be able

to behave accordingly to their target environment in order to avoid from been

detected by security applications that are normally implemented in VM

environments. Through this detection also, malware will be able to hide itself from

security applications thus escaping from their behavior being revealed and studied.

In this research, a remote detection method that was first proposed by [16] was

implemented to further studies the implication of such remote detection in the

current computing environment that as mentioned previously, implementing core

virtue of virtualization in cloud computing and widespread use mobile devices in

daily lives of the society.

This research focus in performing behavioral analysis from experiments

result to see if there are differences in timestamp between high performance VM

and non-VM environment including mobile device. This research is highly

significant as the research extended the work done by [16] to further analyzed the

method in the current computing scenario. This research also contributes to new

7

knowledge in analyzing the method towards mobile device environment and a

proposed countermeasure in order to provide a basic solution for the remote

detection method by disabling the detection of VM and real machine including the

mobile devices in the same environment.

The obtained data shall be use to prove the IP and ICMP timestamp method

could be used to determine whether the target environment is running on a VM or

stand-alone environment including mobile device in the present computing

environment. The test environment in this research simulated the high

performance VM environment with latest hypervisors from renowned makers and

the latest mobile devices with Android operation system on the date of the

experiment. Based on data that were gathered in the experiments, using variation

of technology and machines, this research also proposed the countermeasure by

changing the timestamp reply process in the real machine to address the issue.

This research could serve as the early research work in gathering the

characteristic pattern for timestamp reply behavior in hypervisors technology that

are normally used in cloud computing environment and mobile device running on

Android operating system. Additionally, with the latest trend of Bring Your Own

Device (BYOD) to workplace where employees bring their own personal device with

various specification to their workplace could expose the organization’s internal

network with many security issues and vulnerability [19], [20]. Security issue

within the corporation may occur when mobile device that affected with the

malware or spoofing tools during Internet connection in non-secure Wi-Fi

connection outside of the organization were used to access the corporation internal

secure environment. With the remote operating environment vulnerability,

malware will be able to detect of host’s operating environment within the

organizations and may exploit the vulnerability in only to attack and infected real

and mobile devices while avoiding VM environments that may be used as security

protection system such as honey pots. Through this, the malware could steal the

information within the corporation and spread to affect other devices within the

organization’s internal network [21]

8

With BYOD, organizations are also trending in using smart and mobile

device that runs on Android, Apple iOS, Apple Mac OS X, Blackberry and etc. This

trend is the result of the emerging use of cloud computing environment.

Organizations equipped to their employees with mobile devices for work purposes

such as smartphone in order to give better mobility in completing their daily task.

Due to limited resources in these mobile devices, they will require thin client

software applications such as the ones that are related to sales, finance and

customer managements to enable the utilization of shared information in the cloud

computing environment.

The thin client software applications are normally made available to be

downloaded and installed on the devices. However, before the applications could be

released to the employees, there are high possibilities that the development, testing

and security checking process for the applications will be done using emulator in the

VM machines on the cloud computing environment. Test results might not give the

true results, especially in term of security testing against various malicious

software or malware because the malware may not show their behavior if they had

detected that the target running environment are VM.

As a result, when the application released, the mobile device and other

stand-alone environments might be compromised in such a way that the malware

will start to execute malicious behavior once it had detected that it is not on a

virtual machine environment. Thus, data that are stored or communications

through the mobile devices might be revealed to malicious third party. It may also

cause expensive billing due to unapproved SMS/MMS subscription services via

smartphones [22, 23]. This would create serious consequences for mobile device

users that are using Android as an operating system, as any applications that have

passed a malware detection system on the VM are considered safe and may gain the

user’s trust. Furthermore, since mobile devices use the same architecture as PC, it

leads to the rapid evolution of mobile device malware where it need only two years

for mobile device virus to evolve to a level that computer virus reached in 20 years

[23].

9

As for the personal user’s perspective, in parallel with the growth of mobile

devices usage, there has been a significant increase in malware aiming at gathering

personal information from mobile devices [24]. This information could later be used

by the malware owner or third party for their personal profit such as for marketing

and selling services on the web or profiteering from online banking information [25].

The growing value of personal data will play a big part and it is already more

valuable than payment card information. Increased use of cryptocurrencies such as

Bitcoin by personal user will make virtual currency an attractive target for theft,

not just the preferred payment method of criminals itself [26]. This growing threat

points out the need for users to protect their mobile devices by using anti-virus or

anti-malware applications [27]. But implementing such anti-virus or anti-malware

applications on mobile devices may not be suited for majority of mobile devices due

to the limited resources of CPU, memory and battery power [28], [29].

In order to conserve mobile resources and as a security solution due to the

lack of resources available in mobile devices, the integration of mobile devices and

cloud computing technology is being proposed by delegating security monitoring

and malware detection to VMs in cloud computing facilities [6], [30]. An off-device

in-cloud network service could be implemented [31]. Through this solution, it could

improve the protection of mobile devices from malware threats [32]. With this

approach also, since security services are delegated to VMs in the cloud system for

scanning and protecting mobile device applications, it could free up on-device CPU

and memory resources of the mobile devices while conferring a high level of

malware protection, providing that the mobile devices are connected to the internet.

However, despite the attractiveness of this idea, this research argues that

malware detection security system using VM may have critical vulnerability. That

is, the malware may try to first detect the environment in which it will be running.

Through such detection, malware creators may write programs that will not

perform harmful operations such as botnet attacks upon detecting VM environment

as the running environment, thus reducing the risk for their behavior from being

studied and revealed. If the malware could detect their running environment and

choose not to show their behavior in VMs, the mechanism of off-device in-cloud

network service will not function well. Therefore, security tests aimed at

10

applications for mobile devices may not be effective since malicious programs are

hiding their true nature once detecting that the running environment is on VM.

Thus, security system such as signature-based detection in the VM might not

capture the correct signature data [33]. As a result, when the applications are

released, mobile devices that install the applications might be compromised even

though the devices are installed with anti-virus and anti-malware applications.

With the above arguments, it had shown the significant of the vulnerability

through the remote operating environment detection by malware. Malware

programmers could design malware that first try to detect whether the system is

running on a VM or not before executing any malicious or security breaching

operations. Moreover, once that point is reached, the attacks can escalate from just

VM detection to the exploitation of the VM itself [32], [34]. This creates a critical

vulnerability since malware that has avoided detection in the VM may be

downloaded to end user mobile devices as trusted applications. In addition, VM

implementations range from those on known to those on unknown hardware

configurations on various platforms, and hypervisors and VM detection spans a

spectrum of scenarios that need to be investigated. This research believes those

intensive studies should also look into VM detection methods and the capability of

malware to differentiate VM or mobile device environment.

 Therefore, this research examined and analyzed the characteristic patterns

of IP and ICMP timestamps from VM and non-VM environments including mobile

device in order to determine either by using characteristic patterns of IP and ICMP

timestamps, the target operating environments could be distinguished. It is hoped

that through the results reported in this thesis, could be useful in strengthening the

security issue in cyber security that may be caused by exploiting the detection of

VM and non-VM environment. Any loophole that may give risk to security due to

malware attack will need to be addressed and handled. Thus by investigating

possible methods for detecting VM and proposing ways to countermeasure the

detection methods will provide important contribution towards closing down the

possibility for malware in hiding their behavior from VM and choose to execute in

mobile environment.

11

1.4. Summary of Chapter

This dissertation comprises of seven chapters. A brief summary of each chapter

is organized as follows:

Chapter 1 discusses the background, the overall objectives and the significance of

the research to the practical applications.

Chapter 2 gives a brief literature review of related studies and also related

technology related to this dissertation.

Chapter 3 discusses this dissertation proposal of remote detection method using IP

timestamps.

Chapter 4 discusses remote detection method in full-virtualization VM technology

on high performance machine.

Chapter 5 gives a brief overview of proposed countermeasure to resolve the

operating environment detection method using IP timestamps pattern

characteristic.

Chapter 6 gives a brief overview of characteristic patterns of timestamps from

Android operating system on mobile device and comparison with VM.

Chapter 7 discusses and concludes the issues addressed in the dissertation and it

will also discuss the impact, limitations of the research and the future work.

12

CHAPTER 2

Literature Reviews

This chapter discusses the literature reviews on related technologies for this

research and previous works in VM operating environment detection methods. It

gives the overview information for the technical background of this research.

2.1. Overview

Malware that behave accordingly to running environment could become the

threat to cyber security [11]. Researchers showed that malware that are able to

exploit the vulnerability by detecting their running environment and escaped from

being detected by security applications that normally implemented on VM

environments and avoid from being revealed and studied.

Virtualization in computing technology or also known as a hypervisor is a

technology that runs on a physical computer and hosts one or more virtual

machines on top of the physical machine. Virtualization helped to free organizations

and users from physical interface and resource constraints [35], [36]. VMs enhance

software interoperability, system impregnability, and platform versatility.

Virtualization could be done in many forms such as process, storage and network

virtualizations [37]. The virtual machines could simulate physical computers which

then could run software and programs such as operating systems, end-user

applications and more.

Virtualization is also the core technology that empowers cloud computing

[38], [39]. Cloud computing is the current trending service model for organizations

in enabling convenient, on-demand network access to a shared pool of configurable

computing resources, (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or

service provider interaction [40]. At a hardware level of cloud computing, a number

of physical devices, including processors, hard drives and network devices, are

13

located in data centers, independent from geographical location, which is

responsible for storage and processing needs [41]. It leverages virtualization

technology in lowering the costs for the service users and improving utilization and

management capabilities for the cloud service providers [42].

With the vast usage of cloud computing in the current world scenario, cyber

security issues in hypervisors and VM is becoming more important than ever as any

issues that arise in the hypervisors and VM shall be inherited in the cloud

computing services [43], [44], [45]. Moreover, with the exploded usage of mobile

devices that uses cloud computing services or are integrated with cloud services [46],

further increases the significant of the research in VM security as the security

breach using the vulnerability in VM could affect mass users around the world that

are using mobile devices [47].

The detection of VM operating environment could become one of the potential

vulnerabilities of VM that could be exploited by malicious attackers [18], [48], [49]

[50]. As discussed in the previous chapter, through the detection of VM operating

environment, attackers could design malware that selectively infect and operates

malicious actions on real machines or mobile devices while avoiding and hiding its

malicious actions on VM operating environment. Furthermore, malware targeting

mobile devices is growing[51]. Malware could exploit the detection of the targets

running operating environment to differentiate between mobile device and

virtualization environment because malware analysis are normally being held in

VM environment [52], [53].

This chapter provides information on the literature reviews of the basic

technologies and the related works in VM operating environment detection method

that were used at the basic references in this research. It covers the literature on

virtualization, related works on VM operating environment detection methods,

network timestamps and malware.

14

2.2. Cyber Security and Cyber Threats

With the new era of the Internet and introduction of cloud computing that

implements distributed computing resources, information assets safeguard in cyber

security is ever becoming a global interest and importance towards organizations,

government and personal users [54], [55], [56], [57]. In any case of cyber-attacks or

breaches of sensitive’s information in organizations and governments information

networks, it may causes in the loss of reputations, trust, economically in terms of

financial and even threat to national defense if such attacks are originated from

terrorist groups [58], [59], [60], [61]. Threats from cyber space include Distributed

Denial of Service (DDoS) attacks, Advanced Persistent Threats (APTs) on

organizations and governments network facilities and threats to mobile operating

systems on mobile networked computing [57].

Furthermore, due to the popularity of smart mobile devices and as a result

form the emergence of the Internet of Things (IoT) technologies that employed

collection of smart mobile devices that interact on a collaborative basis and

resources, cyber security attacks and cybercriminal actives are increasing

exponentially [62], [63], [64]. Even with the attentions by researcher on mobile

devices cyber security threats [65], new and more features and functionality are

always being introduced into the mobile devices technologies and this at the same

time also introduce new risks. [66] discussed the threat classifications in mobile

devices which are as the following;

• Root Enablers - Apps that gain root access to the Android OS, escalating a user’s

administrative privileges. Rooting can make devices more vulnerable to malicious

attack.

• Surveillanceware - Apps that remain invisible on the device while surreptitiously

engaging in comprehensive device monitoring and data exfiltration. They are

typically directly installed by someone with physical access to the device.

• Trojans - Apps that advertise legitimate functionality but surreptitiously perform

malicious actions in the background, such as data exfiltration or billing fraud.

With a lot of mobile device connected to open Wi-Fi or unsecured network

connection, attacker may use the vast resources of the network to turn mobile

15

device into a botnet and launch a cyber-attack once connected to organization’s

internal networks or even to national critical infrastructures [67], [68]. There are

some Android applications that when downloaded are capable of accessing the root

functionality of devices (“rooted”) and turning them into botnet soldiers without the

user’s explicit consent [69].

Google implement security scanning before apps developer could make the

apps downloadable in the Google Play Store. The scanning tools called "Bouncer".

However, the malicious apps developer could still find a way to pass through it [70],

[71]. Additionally Bouncer only scan for malicious applications but it does not covers

on the vulnerability within the applications uploaded to the Google Play Store and

attackers may exploits the vulnerability in the applications to attack end users [72].

Attackers could easily and unwittingly download malware to their smart devices or

fall prey to “man-in-the-middle” attacks where cyber-criminals pose as a legitimate

body, intercept and harvest sensitive information for malicious use.

In 2011, there was a mix of Android applications removed from the Android

Market because they contained malware. There were over 50 infected applications -

these applications were copies of “legitimate” applications from legitimate

publishers that were modified to include two root exploits and a rogue application

downloader [69]. Among these malware, Botnets are considered as the biggest

challenge. Botnets are used to send email spam, carry out distributed denial of

services (DDoS) attacks, and for hosting phishing and malware sites. Botnets are

slowly moving towards smart devices since those devices are now basically

everywhere, powerful enough to run a bot and offer additional gains for a

bot-master such as financial gains as discussed earlier [73], [74]. The bots are then

programmed and instructed by the bot-master to perform a variety of cyber-attacks,

including attacks involving the further distribution and installation of malware on

other information systems.

16

2.3. Malware

3. Malware are any kind of hostile, intrusive, or annoying software or

program code (e.g. Trojan, rootkit, backdoor) designed to use a device without the

owner’s consent[24], [75]. Therefore users are required to protect their devices using

anti-virus or anti-malware applications. However, overall solutions to address all

vulnerabilities are yet to be established due to fast track in malware development

and creation. Furthermore, with the existence of metamorphic and polymorphic

types of malware, that have the capability to change its operation codes to avoid

detection would increase the hardship of protection against malware[75].

4. Malware could be categorized to three type of malware which are basic,

polymorphic, metamorphic malware, In basic malware, the program entry point is

transferred to malicious payload so that the malware could obtain the control.

Meanwhile, Polymorphic viruses mutate while keeping the original code intact. A

polymorphic malware consists of encrypted malicious code along with the

decryption module [76]. Polymorphic engine injected in the virus body in order to

enable the polymorphic virus. The polymorphic engine generates new mutants each

time it is executed. Meanwhile, metamorphic malware can reprogram itself using

certain obfuscation techniques so that the reprogram version of malware never look

like the original malware [77]. Such malware evade the detections from the

malware detector since each new variant generated will have different signature,

hence it is impossible to store the signatures of multiple variants of the same

malware sample.

There are three main methods for detecting malware. The first method is called

Pattern Matching Method. This method compares target malware with its

signature. This signature is the malware characteristic pattern in binary. However,

with the ever-increasing number of target malware that needs to be compared,

malware detection using this method proves to be very challenging. The second

method is the Generic Method which is applied for processes in the computer.

Operation rules are written in definition file and anti-virus software compares the

next operation of a target with the rules. When the next operation determined as

out of rules, it will be canceled. The third method is called Heuristic method which

17

is applied before applications are operated. Programs are analyzed by anti-virus

software to determine if any suspicious operation is performed base on its behavior

when it was executed somewhere else. For virtual machine, dynamic heuristic

method is applied for scanning programs before it is operated. Programs are

analyzed by antivirus software and if the program determines as malicious software,

it will be isolated.

Behaviors of malware could be studied and analysis in security purposes VM. In

order to avoid from being tracked by VM-based security systems, malware may now

try to detect the system in which it is currently operating to determine either it is

VM environment or not. By such detection, the malicious system could withdraw

any harmful operations such as botnet attack and therefore hiding itself from the

VM security systems. This argument is supported by various researches, which had

proved that malware are able to detect if they are running in Virtual Machine (VM)

or not.

2.4. Virtualization

Virtualization is the simulation of the software and/or hardware upon which

other software runs. This simulated environment is called a VM. In full

virtualization, one or more operating systems (OSs) and the applications are run on

top of virtual hardware. Each instance of an OS and its applications runs in a

separate VM called a guest operating system. The guest OSs on a host are managed

by the hypervisor, which controls the flow of instructions between the guest OSs

and the physical hardware, such as CPU, disk storage, memory, and network

interface cards.

Hypervisor provides complete independence and autonomy of each virtual

server to other virtual servers running on the same physical machine. The

hypervisor also monitors and controls the physical server resources, allocating what

is needed to each operating system and making sure that the guest operating

systems or the VM cannot disrupt each other.

18

Hypervisors are large pieces of software with 100,000 codes or more that in

charge of providing each VM with the illusion of being run on its own hardware by

exposing a set of virtual hardware devices such as CPU, memory, NIC and storage

[78]. The hypervisor can partition the system’s resources and isolate the guest OSs

so that each has access to only its own resources, as well as possible access to shared

resources such as files on the host OS. Also, each guest OS can be completely

encapsulated, making it portable. Some hypervisors run on top of another OS,

which is known as the host operating system. VM is one of the underlying

technologies in the information technology industry. The VMs are implemented on

hypervisor hosts.

Hypervisor supports the creation of a virtual network that connects the

virtual network interface card (NIC) to a network that is composed of virtual

switches. This virtual network connects to the physical NICs on the host machines

and allows applications on VMs to connect to services outside of the hosts. As with

other resources in the VM, the hypervisor is the manager of network traffic in and

out of each VM and the host. Applications send network requests to the guest

operating system which passes the request through the virtual switch. The

hypervisor then takes the request from the network emulator and sends it through

the physical NIC card out into the network. When the response arrives, it follows

the reverse path back to the application. As a result, virtualization adds a number

of wrinkles to the networking environment.

There are 2 main types of virtualization as shown in Figure 1. Full

virtualization, or bare-metal implementations, run directly on the server hardware

without any host operating systems beneath them, whereas para-virtualization run

on top a traditional operating system. Para-virtualization is easy to install and

deploy because much of the

19

Type 1 Hypervisor (full virtualization) Type 2 Hypervisor

(para-virtualization)

Figure 1: Types of hypervisor

hardware configuration work such as networking and storage is handled by the

underlying operating system [79].

In full virtualization, the hypervisor provides most of the same hardware

interfaces as those provided by the hardware’s physical platform. This means that

the OSs and applications do not need to be modified for virtualization to work if the

OSs and applications are compatible with the underlying hardware. Full

virtualization also uses the hypervisor to coordinate the CPU of the server and the

host machine's system resources in order to manage guest operating systems

without any modification. In this scenario, the hypervisor provides CPU emulation

to handle and modify privileged and protected CPU operations made by unmodified

guest operating system kernels.

Meanwhile, in para-virtualization, hypervisor offer interfaces to the guest

OS that the guest OS can use instead of the normal hardware interfaces. If a guest

OS use para-virtualization interfaces, they offer significantly faster access to

resources such as hard drives and networks. Difference types of para-virtualization

are offered by difference hypervisor systems.

20

2.5. Network Timestamps

 Various network protocol exists in network timestamp that enables more

than one type of network timestamp to be obtained in one packet. IP option type 44

can be attached to request for IP timestamp reply in the IP header. Meanwhile

ICMP timestamps request reply can be used to obtain ICMP packets timestamps

information.

Timestamp that is used in this research are as following:

IP Timestamp: RFC 781 - IP Timestamp is an optional extension to the IPv4 header

that allows the sender to request timestamp values from any machine which

handles the packet by specifying its IP address. According to RFC781, the IP

timestamp option is a right-justified, 32-bit timestamp in milliseconds since

midnight UT [80]. It is primarily used for diagnostics purposes specifically to

measure network delay time between gateways.

ICMP Timestamp: RFC 792 - The data received (a timestamp) in the message is

returned in the reply together with an additional timestamp. The timestamp is 32

bits of milliseconds since midnight UT. The Originate Timestamp is the time the

sender last touched the message before sending it, Received Timestamp is the time

the echoer first touched it on receipt, and the Transmit Timestamp is the time the

echoer last touched the message on sending it.

IP Header structure with timestamps request option is as Figure 2 and ICMP with

timestamps reply request is as Figure 3.

The combination of this IP Timestamps Request Option and ICMP

Timestamps reply message are manipulated in this research to create packets that

sent to target machine to obtain timestamps data.

2.6. Overview of Android Operating System

Android [81] is an open-source software with special architecture. Android

architecture is as per Figure 4. Android architecture composed of five layers:

21

Figure 2: IP header

Figure 3: ICMP timestamp/timestamps reply message

Applications, Application Framework, Libraries, Android Runtime and the

Linux kernel. The uppermost layer, the Applications layer, provides the core set of

applications that are commonly offered out of the box with any mobile device. The

Application Framework layer provides the framework Application Programming

Interfaces (APIs) used by the applications running on the uppermost layer. Besides

the APIs, there is a set of services that enable the access to the Android’s core

features such as graphical components, information exchange managers, event

managers and activity managers.

Below the Application Framework layer, another layer containing two important

parts: Libraries and the Android Runtime. The libraries provide core features to the

applications. The Android Runtime consists of the Dalvik virtual machine and the

Java core libraries. The Dalvik virtual machine is an interpreter for byte code that

has been transformed from Java byte code to Dalvik byte code.Dalvik is compiled to

native code whereas the core libraries are written in Java and interpreted by Dalvik.

Until recently, there are various versions of Android which includes Marshmallow,

Lollipop, KitKat and Jelly Bean [81].

22

Applications

Application Framework

Libraries

Linux

Figure 4: Android system architecture

2.7. VM Operation Environment Detection Methods

VM was not completely transparent to the applications and malware might

exploit the detection of VM in not show their behavior if they are running in VM

environment. As mentioned previously in the previous chapter, various software

which are targeted to be operated in mobile devices are created and tested first in

the VM in order to detect any potential harm and abnormality with assumption

that the result will be the same when it is executed in stand-alone environment of

the mobile devices. However, if malware are able to detect that they are running on

virtual environment and not showing their real behavior during the testing phase in

VM environment, once the software is installed for users usage on their smart

devices, malware might infect and compromised their devices. Thus, research to

address this issue need to be done to avoid the risk of users in disposing their

information when using mobile devices that are infected by malware that was not

detected during the testing in the VM environment.

On the other hand, with the recent emerging of cloud computing, and with

more systems and applications are implemented on clouds infrastructure, if

malware and attacker could determine they are running on virtual environment,

more comprehensive attack to take over the VM itself might be deployed base on the

Android Runtime
Dalvik VM
Java Core Libraries

23

information that they could obtain. More research needs to be done to understand

how VM could be detected and how to improve on that especially in the emerging of

cloud computing that utilized the VM technologies.

Various researches [82], [17], [83], [84] discussed about hypervisor detection

method. Previous methods for detecting execution within a hypervisor have

typically focused on specific artifacts of the implementation, such as hardware

naming, guest-to-host communication systems, or memory addresses etc. This

research is focusing on detection method that focuses on network implementation

and VM behavior.

A technique for remotely detecting hypervisor existence without

compromising the target using network timestamp was discussed in [17]. The

technique examines discrepancies between two timestamps, IP and ICMP

Timestamps in one packet to determine VM presence. When the target hosts use

VM, some of the timestamp will show discrepancies because hypervisor sometimes

interrupts timestamp operations to complete other operations. Also, hypervisor

supports the creation of a virtual network that connects the virtual network

interface card (NIC) to a network that is composed of virtual switches.

This virtual network connects to the physical NICs on the host machines and

allows applications on VMs to connect to services outside of the hosts. As with other

resources in the VM, the hypervisor is the manager of network traffic in and out of

each VM and the host. Applications send network requests to the guest operating

system which passes the request through the virtual switch. The hypervisor then

takes the request from the network emulator and sends it through the physical NIC

card out into the network. When the response arrives, it follows the reverse path

back to the application. As a result, virtualization adds a number of wrinkles to the

networking environment. This mechanism is shown in Figure 5.

Thus, real machine and VM should show the difference in behavior such as

following:

24

Figure 5: Virtual network path

i. Deviation of the clock.

In VMWare, behaviors of network communications are difference because

timer device emulation was held. As a result, the gap can be observed by

network timestamp and connection time out.

ii. Packet delivery.

In VM, host network interface that shared packet delivery overhead will

exist. For example, in Xen, when packet was delivered, it will deliver to the

VM queue and will be processed according to VM schedule and this behavior

is difference in real machine because when packet delivered, it will be

processed immediately.

iii. Packet operation.

Due to the ability of VM to handle packets, the way packets handled will be

different.

IP timestamp option of an Internet Protocol version 4 (IPv4) packets also could be

exploited to exchange a secret message as a covert channel. This covert channel will

25

use the Hypertext Transfer Protocol (HTTP) which usually has a lot of traffic

associated with it[85].

2.8. Previous Works

Previous work by Kohno [16] highlighted the potential of remote detection

method by using network timestamps. In the study, Kohno introduced remote

fingerprinting of physical device. The remote fingerprinting was done without the

fingerprinted physical devices known cooperation. The research exploited clock

skew from small, microscopic deviations in device hardware and did not require any

modification to the fingerprinted devices. The method that was introduced by

Kohno showed consistent measurements even when the measurer was thousands of

miles and multiple hops away from the fingerprinted device, and even when the

fingerprinted device is connected to the Internet from different locations and via

different access technologies.

While the work by Shimamura [17] explored the characteristic pattern based

on the differences between IP and ICMP timestamps in 1 packet. The study [17]

proved that timestamps discrepancies between IP and ICMP timestamps were

caused by time correction in VM environment. In [17], experiments were done to

detect discrepancies of timestamps in two cases, when ICMP timestamp + 1 < IP

timestamp and when ICMP timestamp < IP timestamp. The experimental results

showed that discrepancies occurred only 0.12% from total 1,000,000 packets in the

case when ICMP timestamp + 1 < IP timestamp for real environment. However, for

VMs, discrepancies occurred in the range between 0.1% until 0.5% from total

1,000,000 packets. On the other hand, in the case when ICMP timestamp < IP

timestamp, the study found out that 0% of discrepancies occurred from total

1,000,000 packets from real environment and the range of 0% until 2.5% of

discrepancies occurrence for VMs.

In this dissertation, both IP and ICMP timestamps replies was obtained and

compiled from the experiments. However, the ICMP information was obtained and

compiled only for validation purposes of remote detection using method that was

discussed in [17].

26

2.9. Concluding Remarks

Various research [16], [17], [34] already discussed on VM detection method

since VMs are introduced. Previous methods for VM detection have typically

focused on specific artifacts of the implementation, such as hardware naming,

guest-to-host communications systems, or memory addresses. Functional and

transparency detection method was discussed in [34] by highlighting detection

strategies that look upon the characteristic of logical discrepancies, resource

discrepancies and timing discrepancies between VM and non-VM environment.

Detection method focuses on the implementation of the VM that was discussed,

includes method in targeting hardware sources that contain specific word or

command related to VM implementation.

Detection could be also done by using tools that are available on websites.

Detection method that emphases on difference in performance for VM and physical

hardware also were discussed in [82] [34]. But, as machine that is used to install the

VM is continuously improved, the difference according to performance might have

changed and tests need be done constantly to verify current situations. A light

weight detection method of VM using CPU instruction execution performance

stability had been studied in [83]. However, this method requires adjustment to be

made in the OS and could lead to instability in the OS itself.

On the other hand, detection methods that focus on the network

implementation and behavior of VM could be considered ways of remotely detecting

VMs without compromising the target. A VM detection method that uses network

timestamps was first suggested by Kohno [16] wherein the TCP timestamp was

used as a covert channel to reveal the target host’s physical clock skew. Meanwhile

in [17], discrepancies between two different kinds of timestamp, IP and ICMP in one

packet were used to determine the presence of a VM.

From the literature review, in this research, scope of studies expanded to

explore the distinguishable differences of timestamps pattern. Validation using

method that implemented in [17] on high performance real machine, virtual

machine on high performance machine and also on mobile device that uses Android

27

as OS, and Android that emulated in VM on high performance machine were done

and the results also mentioned in this dissertation. Since blocking ICMP

timestamps is not available by default on Android platforms, the detection method

using timestamps pattern could prove to be a vulnerability for the mobile devices

[86] in this study.

Remote detection using differences between 2 successive timestamps in the

replied packets and how many times identical timestamps was stamped between

the packets were researched as new analysis method for remote detection using

network timestamps in this dissertation.

28

CHAPTER 3

Research Proposal

This chapter discusses the proposed remote detection method of operating

environments using network timestamps characteristic that is used in this research.

This chapter also discusses on the hypothesis of expected results of the research

based on literature reviews and related works that had been conducted by other

researchers [16], [17], [82], [83], [84].

3.1. Overview

Previous work by Kohno [16] highlighted the potential of remote detection

method of operation systems by using network timestamps. Meanwhile, the work by

Shimamura [17] explored on the characteristic patterns, based on the differences

between IP and ICMP timestamps in 1 packet to remotely fingerprinting operation

systems. In [17], experiments were done to detect discrepancies of timestamps in

two cases, which are when ICMP timestamp + 1 < IP timestamp and when ICMP

timestamp < IP timestamp.

As discussed in chapter 1 and 2, with the advancement in computing

technologies that contribute to the improvement in machine performances and the

increased usage of personal smart mobile devices, it is necessary to perform

validations of the remote detection methods discussed above.

In this dissertation, by extending the works done by Kohno and Shimamura,

the following new approach of analysis methods were used in order to determine the

characteristic patterns of network timestamps (IP and ICMP) in various

environments;

1) Differences between 2 successive timestamps in the replied packets

2) How many times identical timestamps was stamped between the packets

29

Both IP and ICMP timestamps replies was obtained and compiled from the

experiments. However, the ICMP information was obtained and compiled only for

the validation purposes of remote detection using the method that was discussed in

[17].

3.2. Method in Determining Network Timestamps Different

This research explores remote detection method by comparing differences in

characteristic patterns between IP timestamps using two new approaches that were

based on the works done by Kohno and Shimamura in measuring the discrepancies.

This research also performs validations of the remote detection method by using

characteristic pattern differences between IP and ICMP timestamps that was

proposed in [17] in current technology scenario which includes smart mobile devices.

In [17], experiments were done using machine with 1.86 GHz clock speed.

Experiments result in [17] showed that in the case when ICMP timestamp + 1 < IP

timestamp, the discrepancies occurred only 0.12% from total 1,000,000 packets for

real machine environment. However, for VMs, discrepancies occurred in the range

between 0.1% until 0.5% from total 1,000,000 packets. On the other hand, in the

case when ICMP timestamp < IP timestamp, the results in [17] found out that 0% of

discrepancies occurred from total 1,000,000 packets from real environment and the

range of 0% until 2.5% of discrepancies occurrence for VMs.

As part of this study, experiments were done to verify if the same results

could still be obtained using the method that was used in [17] on machine with

better performance compared to the machine that was used in [17]. However, the

experiments that were conducted in this dissertation showed that the same result

was not reproducible when machine with higher performance, which is 2.40 GHz

clock speed was used.

Since nowadays, machines with higher CPU performance is widely being

used, new approach was proposed in this dissertation to remotely detect the

operating environment. The new approach methods that are proposed in this

dissertation are as the following:

30

1) Differences between 2 successive timestamps in the replied packets

2) How many times identical timestamps was stamped between the packets

This dissertation also proposed a countermeasure technique to disguise IP

timestamps characteristic from real machine such that it shows similar IP

timestamp patterns as the VMs.

This dissertation provides the initial findings of network timestamps

characteristic patterns using the two new analysis approach mentioned above. The

new approach gives new potential as a method for remotely detecting operating

environment using network timestamps. This research also could serve as the

validation works of the remote detection methods that were previously proposed by

Kohno and Shimamura in current world scenario that has improved machines

performance compared to the machines that were used in [16] and [17], and also

smart mobile devices with low performance which are widely used in daily lives.

In the experiments in this study, packets were sent to the target machines to

request for the IP and ICMP timestamps information. The IP and ICMP timestamps

information in the replied packets from the target machines were obtained and

compiled. The compiled timestamps information was used to determine the

characteristic pattern of IP and ICMP timestamps using the analysis methods used

in [17] and the new approach discussed above. The ICMP information was obtained

and compiled only for validation purposes of remote detection using method that

was discussed in [17].

In order to determine the IP and ICMP timestamps, packets were created

and sent to the target machines. IP option type 0x44 was inserted in the created

packet’s IP Header in order to request for IP timestamps reply. In addition, ICMP

timestamps request type 13 was also embedded in the created packet to request for

ICMP timestamp.

Figure 6 shows the packets, which includes IP and ICMP timestamp request

that were used in the experiments. In the created packets, IHL was set to 14, which

IP timestamp option including header length 1 is for 32 bit. The total length of the

packet is 76 bits, which is the accumulated sum of header and data segment. The

31

header segment is 56 octets, while 20 octets are for the data segment. The length in

the header is 36 bits and the maximum length value is 40. Flag is set to 1 for each

timestamp that stamped before the internet address embedded.

As real life application scenario, the packets that request for IP and ICMP

timestamps information to the target machines could be embedded in video

datagram to avoid from being blocked as potential attacks. Studies in [87] showed

that timestamp-based content aware mechanism for video streaming exits, thus

provide the prove that timestamps reply request could be embedded in video

streaming.

Figure 6: Packet structure

32

3.3. Experiments Environment

 The general network settings for experiments that were conducted in this

research are shown in Figure 7. In all of the experiments conducted, 1,000,000

packets were sent from measurer machine to target machine in order to obtain

sufficient data to determine the characteristic pattern of IP and ICMP timestamps.

These amounts of packets are considered sufficient for the evaluation. The target

machines were real machine or VM that was set up in high performance machine.

To simulate real life scenario that normally utilize the usage of the high

performance machine that hosts the VM, beside of the target VM, another 30 VMs

wit h utilization of more than 80 percent were set up in the high performance

machine. Details specification of experiments environment is discussed in the next

chapters. For experiments conducted in chapter 4, 2 VM hypervisors that were used

are VMWare ESX and VirtualBox. While for experiments conducted in chapter 5, 3

hypervisors which are, VMWare ESX, Xen and VirtualBox were used.

 As for the experiments conducted in chapter 6, Sony Xperia mobile device

was used as the target real host to obtain data for mobile device. 4 versions of

Android operating system which are Ice Cream Sandwich 4.0.4, Jelly Bean 4.2.2,

KitKat 4.4.4 and Lollipop 5.0.2 was used as the test mobile operating systems.

Android operating system was chosen as the target operating system for the mobile

device in this research because Android is commonly being used by majority of

mobile devices and it is based on Linux platform that is open to public.

Figure 7: General network settings for experiments

33

3.4. Analysis Method

 In the data analysis, since VM will have queues in handling job for

multiple virtual machines, it is expected that IP and ICMP timestamp will show

discrepancies between successive packets and also timestamps discrepancies in the

same packet. Figure 8 below shows the mechanism on how the network timestamps

discrepancies in one packet could occur as proposed by [17]. Timestamp stamping

for IP and ICMP might differ due to the reason that VM might switch its operation

to other VM. However, as machines performance improves, the data that were

published in previous works do not represent the actual the current scenario. Thus,

in this dissertation, validations of the method were done to understand current

characteristic pattern in high performance machine with 2.40 GHz clock speed and

also on smart mobile device that was not tested in previous works.

Due to differences in job handling mechanism between VM and non-VM, IP

and ICMP timestamp discrepancies between real environment and virtual

environment are expected to occur. Timestamps from real machine on high

performance machines are expected to be faster than that of VM due to the behavior

of VM itself that share their underlying hardware with the host operating system.

Other applications and other virtual machines might also be running on the same

host. When more than two guests operated on VM Host, one VM will be suspended

to give ways for the other VM to operate. When the VM suspended, the timestamp

will be saved and the timestamp value will be re-written when the operation

resumed. Because the guest operating system keeps time by counting interrupts,

time, as measured by the guest operating system falls behind real time whenever

there is a timer interrupt backlog. VM deals with this problem by keeping track of

Figure 8: Points that expected to show time discrepancies between

IP and ICMP timestamps in VM

VM n
descheduled

VM n
rescheduled

Processing
another VM

Timestam
p source
clock

IP and ICMP timestamps
stamping

34

the current timer interrupt backlog and delivering timer interrupts in order to catch

up. However, time adjustments to catching up could create IP and ICMP

discrepancies between the two successive timestamps.

For high performance real machine, this research predicts that quite a

number of same timestamps will be stamped in the successive packets because of

the speed that the timestamps were stamped is faster than the increase of

timestamp source. The differences of timestamps between successive packets were

analyzed to characterize the patterns that may occur from VM, real machine and

mobile device.

In this dissertation, the analysis method was based on how many same timestamps

are stamped in 1 millisecond such is shown in Figure 9 and the difference between

two successive timestamps. The number of times when packets were sent are

represented as n and (n+1) until n =1,000,000. Calculation of differences between 2

successive timestamps n and n+1, … in the replied packets and how many times

identical timestamps was stamped between the packets were done. In the

experiments, timestamps reply for count n is in millisecond unit and different

characteristic pattern for VM and non-VM including mobile devices is expected to be

disguisable due to machine performance factor and time adjustment mechanism

that implemented in VM. Thus, this research anticipates that the results for IP and

ICMP timestamps from in the experiments should be as shown in Table 1 below.

Figure 9: Points that expected to show timestamps discrepancies for successive

packets in VM

Timestamp
source clock

35

Table 1: Anticipated experiment results for IP and ICMP timestamps reply

 Count (n), …,
 (n+1) until
 n =1,000,000

 IP Timestamp
 x10

 ICMP Timestamp
 x10

 Differences between
 two successive IP
 timestamps

 How many same IP
 timestamps was
 stamped

1 xxxxxxxx xxxxxxxx 0

4

2 xxxxxxxx xxxxxxxx 0

3 xxxxxxxx xxxxxxxx 0

4 xxxxxxx0 xxxxxxx0 0

5 xxxxxxx0 xxxxxxx1 1

5

6 xxxxxxx1 xxxxxxx1 0

7 xxxxxxx1 xxxxxxx1 0

8 xxxxxxx1 xxxxxxx1 0

9 xxxxxxx1 xxxxxxx1 0

10 xxxxxxx2 xxxxxxx2 1 1

3.5. Concluding Remarks
This dissertation proposed the remote detection using IP timestamps by

observing the characteristic patterns of the differences between 2 successive

timestamps in the replied packets and how many times identical timestamps were

stamped between the packets. The proposed analysis method and the experiment

background were discussed in this chapter.

The anticipation of the experiment results for IP and ICMP timestamps was

made based on finding that differences between IP and ICMP timestamps reply

were not reproducible in machine with 2.40 GHz clock speed that was used for

experiments in this dissertation, contrary from finding in [17] that used machine

with 1.8 GHz clock speed.

Also as presented in the next chapters, based on the data from the experiments, the

new approaches that are proposed in this dissertation, by analyzing the differences

of successive timestamps and how many times same timestamps were stamped as

IP timestamps characteristic patterns between VM and real machine, shows the

potential to be used as a remote detection method to detect VM operating

environment.

36

CHAPTER 4

Vulnerability Analysis using Network

Timestamps in Full Virtualization

This chapter presents a remote detection technique using IP timestamp option that

could be used to detect full virtualization VM environment and contributing to the

VM vulnerability. IP timestamp option allows a requester to request timestamps

value from any machine that handles packets by specifying the machine’s IP

address. This chapter discusses the characteristic patterns for IP timestamps

received from the full virtualization VM environment and the comparison with IP

timestamps received from real machine.

4.1. Overview

This test case served as the basic study to determine if network timestamp

could potentially still be used by attackers to remotely distinguish operating

environments such as VM and real machine. Related work by [17] had proved that

IP and ICMP timestamp combinations could be used to remotely detect VM

environment by using the characteristic pattern of timing discrepancies between IP

and ICMP timestamps. Furthermore, 1/3 from hosts over the internet is set up to be

able to process IP and ICMP request [88]. Thus, assumption that there are numbers

of host that able to be remote scanned using IP and ICMP timestamp data were

made.

In [17], experiments were done to detect discrepancies of IP and ICMP

timestamps in two cases, which are when ICMP timestamp + 1 < IP timestamp and

when ICMP timestamp < IP timestamp. The experimental results in [17] showed

that discrepancies occurred only 0.12% from total 1,000,000 packets in the case

when ICMP timestamp + 1 < IP timestamp for real environment. However, for VMs,

discrepancies occurred in the range between 0.1% until 0.5% from total 1,000,000

37

packets. On the other hand, in the case when ICMP timestamp < IP timestamp, the

study found out that 0% of discrepancies occurred from total 1,000,000 packets from

real environment and the range of 0% until 2.5% of discrepancies occurrence for

VMs.

Experiments in this research were done to validate the remote detection

method by using characteristic pattern differences between IP and ICMP

timestamps that were proposed in [17] in full virtualization VM environment.

However, the experiments data in this study showed that the result in [17] was not

reproducible when machine with higher performance was used. This research used

machine with 2.40 GHz clock speed while in [17], machine with 1.8 GHz clock speed

was used.

Since nowadays, machines with better CPU performance are increasingly

being used, new approaches are proposed in this dissertation to remotely detect the

operating environment. In experiments conducted for this chapter, both IP and

ICMP timestamps replies were obtained and compiled. However, the ICMP

information was obtained and compiled only for validation purposes of remote

detection using the method that was discussed in [17]. As mentioned above, the

results from the experiments done in this work showed that the IP and ICMP

timestamps in the same replied packets have the same value, thus only IP

timestamps data were used for further discussion in this dissertation. The

experiments for this chapter aim to determine either operating environment could

be detected using the following methods which are being proposed in this

dissertation:

1) Differences between 2 successive timestamps in the replied packets

2) How many times identical timestamps was stamped between the packets

When the target hosts use VM, some of the timestamps will show

discrepancies because VM sometimes interrupted timestamp operations to complete

other operations. The VM clock is managed by timer device emulation, which called

as VM switch and the differences in timestamps are bigger because VM operation

will be switched with other VM in the queue. On the other hand, in real machine

38

environment, the timestamp difference could be very small since there is no

interruption in the process.

This research is focusing on finding possible way in using timestamp data to

detect the presence of VM. As the extension from the previous chapter, remote

detection technique for full virtualization VM that uses IP timestamp option is

discusses in this chapter. Experiments were conducted to obtain IP and ICMP

timestamps reply data using method that was explained in Chapter 3 to prove that

VM is detectable using timestamps discrepancies in full virtualization. However,

from the experiments, the results showed that the IP and ICMP timestamps in the

same replied packets have the same value, thus only IP timestamps data were used

for further discussion in this dissertation.

The experiments environment was a private cloud computing environment

that consists of full-virtualization VM and was set up in campus lab. Experiments

were done in the lab network environment to minimize interruption to the IP

timestamps data due to router clock skew. This research set up test environment

with high performance machine as a host to run 30 VMs in order to provide

maximum utilization for the machine in full virtualization technique. In the

experiments, packets were sent from stand-alone machine as measurer client to

target machine that host VMs and a real machine.

4.2. Experiments Environment

 A custom script was executed in the measurer machine to send packets to target

machine requesting for IP timestamps replies. These requests were repeated until

1,000,000 times. The IP packets data structure with IP timestamps request options

and ICMP request is shown in Figure 6 in Chapter 3. The physical experimental

environment that was set up for this experiment is shown in Figure 10. VM software

from VMWare and VM vSphere 5 were emulated in the VM environment as full

virtualization VM system and Linux Ubuntu 12.04 was emulated as the host OS for

the VMs.

The specifications for the experiment environment are shown in Table 2,

Table 3 and Table 4.

39

Figure 10: Experimental environment set up for real machine and 2 VMs

Table 2: Experiment environment for real OS

 OS Linux Ubuntu 12.04

 CPU Intel Xeon E5-2440

 Memory 1GB

 Hardware Dell Power Edge

40

Table 3: Experiment environment for VMWare

OS Linux Ubuntu 12.04

Hypervisor VMWare vSphere
Hypervisor (ESXi) 5.1.0

CPU Intel Xeon E5-2440

Hardware Dell Power Edge

Memory (Virtual Allocation) 1GB

Storage (Virtual IDE) HDD
16GB

Table 4: Experiment environment for VirtualBox

OS Linux Ubuntu 12.04

Hypervisor
Oracle Virtual Box
4.3.12

CPU Intel Xeon E5-2440

Hardware Dell Power Edge

Memory (Virtual Allocation) 1GB

Storage
(Virtual IDE) HDD
16GB

1,000,000 times of request packets were constantly sent to the target

machines in order to measure the differences in timestamps reply characteristic

received from real machine and VM. The differences were measured to the nearest

microsecond. For the target machine in the experiments, high performance Intel(R)

Xeon(R) Processor E5-2440 with 6 cores and 2.40GHz clock speed were used.

Timestamps replies that were received at the measurer machine were

compiled to the nearest microsecond as data in a CSV file. In the case of VM, since

there will be VM interface between the CPU and the network interface, it is

expected that there will be a small delay in issuing the timestamps between the

requests. On the other hand, it will not be an issue in real machine since it will only

41

have CPU and network interface interactions. Thus, as the results from analyzing

and comparing the timestamp replies data between VM and real machine, it is

expected that the timestamps value from VM will change more frequently compared

to the timestamp replies from real machine.

4.3. Experimental Results

In this study, testing was performed using high performance machine with

clock speed of 2.40 GHz and implementing full virtualization technique using

VMWare ESX and VirtualBox. The timestamps reply consists of 32 bits but only

could be display in 8 digits of timestamps in hexadecimal and 10 digits of timestamp

in decimal number. The collected IP timestamps data were analyzed to determine

its characteristic behavior. In the data analysis, this research defines n as count for

how many times same timestamps were replied from the targeted machines. For

real machine, 62% of the timestamps replies were 5 times of the same timestamps

value and 25% of the timestamps replies were 4 times of the same timestamps value.

However, for VM environments the behavior of timestamp stampings is different

from the real machine where lesser same timestamps were sent as replies when the

timestamps reply packets were sent to the requestor. The behavior pattern

differences in these experiments are as shown in Table 5. Percentage of same

timestamps that were stamped are shown in Table 6. Figure 11 shows the

comparison of real environment and VM environments on how many time the same

timestamps replies were observed. In real machine, more than 60% of timestamps

are stamped for 5 times. In contrast, this research could see that there were no 5

times same timestamps replies in VirtualBox and VMWare ESX.

The reason is that VM sometimes interrupted timestamps operations to

complete other operations and make the time taken to complete job longer than real

machine. Even though in full virtualization that simplifies migration and portability,

the remote detection by using IP timestamps packet reply still could be observed

and this could reveal the environment that one system is running on. Malware will

be able to detect the environment that they are running on and could choose not to

42

run at all or manipulate the running environments for the attack. Full

virtualization offers the best isolation and security for virtual machines,

Table 5: Portion of collected IP timestamps information

Count

IP timestamp (millisecond)

Real Machine VirtualBox VMWare

n xxx72359 xxx20763 xxx68337

n+1 xxx72359 xxx20766 xxx68338

n+2 xxx72359 xxx20767 xxx68339

n+3 xxx72360 xxx20768 xxx68339

n+4 xxx72360 xxx20769 xxx68339

n+5 xxx72360 xxx20769 xxx68340

n+6 xxx72360 xxx20770 xxx68340

n+7 xxx72361 xxx20771 xxx68341

n+8 xxx72361 xxx20772 xxx68342

n+9 xxx72362 xxx20773 xxx68343

n+10 xxx72362 xxx20775 xxx68344

n+11 xxx72362 xxx20775 xxx68344

n+12 xxx72363 xxx20776 xxx68344

n+13 xxx72363 xxx20776 xxx68345

n+14 xxx72363 xxx20777 xxx68346

n+15 xxx72363 xxx20778 xxx68346

n+16 xxx72363 xxx20779 xxx68347

n+17 xxx72364 xxx20780 xxx68347

n+18 xxx72364 xxx20781 xxx68348

n+19 xxx72364 xxx20782 xxx68349

43

Table 6: Percentage of same timestamps that were stamped

Count N Real Machine
(%)

VirtualBox
(%)

VMWare
(%)

7 2 0 0

6 3 0 0

5 62 0 0

4 25 1 36

3 5 19 55

2 2 47 7

1 0 33 2

Figure 11: Count for same timestamps reply for Real Machine, VirtualBox and

VMWare

however, remote detection by using network timestamps need to be addressed to

resolve the VM vulnerability. Since that machine that was used to install the VM is

continuously improved, the difference according to performance might be different.

0 2 4 6 8

Rate

Same timestamps (times)

Frequency stamping same timestamps

Real Machine

VirtualBox

Vmware

0.7

0.6

0.5

0.4

0.3

0.2

0.1

VMWare

44

More tests need to be done constantly and periodically to verify the current situation

and detect vulnerability.

4.4. Concluding Remarks

Building a transparent VM is still a difficult task, as shown from the results

of this research where remote detection method was discovered even for full

virtualization VM technique. How VM could be detected has significant value that

requires extensive studies and research in order to prevent any security loop holes

that could exploit the vulnerability of VM including security holes that caused by

any possible detection method. By analyzing all possible detection methods, which

will be the ideal expectation, countermeasures could be proposed and implemented

for creating better secured VM in cloud computing environment.

This study explores detection methods by looking at it from the perspective of

detecting full virtualization VM existence by performing timestamps analysis using

IP timestamp option, in order for that vulnerability in detecting VM existence from

timestamps data could be addressed. This research shows that behavior between IP

timestamps packets reply from the most popular technique of choice, VMWare ESX

and VirtualBox could be differentiated remotely and this could be potentially used

as a VM detection method. As future work, researches could be done to perform

more tests using various machines and also in grid and cloud test bed to get more

data characteristics for comprehensive analysis.

Based on the discussion in this chapter, it shows that the characteristic of

timestamps patterns is different for VM and real machine. In the next chapter,

based on the finding in this chapter, a mechanism will be proposed to change

timestamps replies in real machine in order to make it look similar with VM’s

timestamps characteristic pattern. This mechanism should be able to hide the

differences between timestamps replies from VM and non-VM and prevent it from

being used as method to detect either that the machine is running on VM

environment or not. Based on this research, future research about malware

behavior and its relationship with VM remote detection for virtualizing

environments could be studied. Thus, it is the goal of this dissertation to open up

45

various scenarios in virtualization implementation and the consideration to obtain

various characteristic of data for future researches in this field.

The results will contribute on providing more secure cloud computing

services. The approach that was proposed will contribute to the prevention of VM

environment detection based on remote timestamps replies. This approach will

decrease the possible detection method that could lead to manipulation of cloud

computing environment and the possible attack vector. This finding also could be

applied to cloud computing security policy framework for cloud computing.

46

CHAPTER 5

Proposed Countermeasure for Virtual

Machines Detection Methods Using IP

Timestamps Pattern Characteristic

This chapter presents a method for detecting VM environments by remotely detect a

VM without installing any program on the target machine. It works by analyzing

the pattern of IP timestamps in replies sent from the target machine to determine

whether the target machine is a real machine or a VM. This chapter gives a brief

overview of proposed counter measure to resolve the operating environment

detection method using IP timestamps pattern characteristic.

5.1. Overview

Remote VM detection method works by exploiting the IP timestamp

information in the reply packets from the VM. By analyzing the pattern of the IP

timestamps, it can reveal the presence of a VM. The IP timestamp is an optional

extension to the IP header that allows the sender to request timestamp values from

any machine that handles the packet by specifying its IP address [89]. The IP

timestamp option has three modes available:

 Collect timestamps from each device; space in the header is available for

up to nine devices.

 Collect the IP address and up to four timestamps from each device

 Specify in advance up to four IP addresses from which a timestamp is

requested.

Here, the third mode was chosen to be implemented, because the target host

IP address in the controlled environment of the experiments could be set up in

advanced. Another reason for selecting this option is that it is conveniently available

in the Linux ping command that used in the program that used in this experiment.

47

In [17], it was observed that the IP and ICMP timestamp patterns could be

differentiated by analyzing the IP and ICMP timestamps in 1,000,000 packets sent

back as replies from the target VM. Thus, it is concluded that 1,000,000 IP

timestamps from the target machines would be sufficient for observing the

differences in IP timestamps patterns between the target machines. In this chapter,

experiments were conducted to obtained IP and ICMP timestamps data from 3

major hypervisors which are VMWare, VirtualBox and Xen to be used for

implementation of proposed modification. In the experiments conducted, both IP

and ICMP timestamps replies were obtained and compiled. However, the ICMP

information was obtained and compiled only for validation purposes of remote

detection using the method that was discussed in [17]. From the experiments, the

results showed that the IP and ICMP timestamps in the same replied packets have

the same value, thus only IP timestamps data were used for further discussion in

this dissertation.

5.2. Proposed Remote Detection method and Countermeasure

In client test, 1,000,000 consecutive non-suspicious packets were sent that

had the IP timestamp option enabled to the target machines. To avoid the request

queue from being flooded, request packets was sent after the previous packet reply

was received. The reply packets from the target machines included the IP

timestamp information, i.e., the time in the target machine when the reply packet

was generated. The data structure of the sent IP packet is shown in Figure 6 in

Chapter 3.

The reply packets from the target clients and their IP timestamps were

analyzed to determine if there was any distinguishable pattern characteristic

between the target machines. In the same way as shown in [17], [90], IP timestamp

patterns of the VMs from the real machine could be distinguished.

Distribution graphs were plotted on the basis of the timestamp pattern

differences identified in the experiment. Then, a solution devised using the delay

modification technique, wherein real machines are made to show the same IP

timestamp reply pattern as the VM, thereby eliminating any chance differentiating

between VMs and real machines within the network by using IP timestamp

48

patterns. This countermeasure should be implemented in the real machine rather

than the VM mainly because VMs work by time-sharing host physical hardware and

it is impossible for a VM to duplicate the timing activity of a physical machine even

if it uses several techniques to minimize and conceal differences in timing

performance [91].

The modification was implemented in the time-stamping process in a real

machine to create delays in the timestamps in the reply packets. When the packets

with the IP timestamp option arrive at the real machine, they are delayed using the

countermeasure before being forwarded to OS for processing. The delay is

implemented by adjusting the mean number of repetitions of the same IP timestamp

in the real machine to match those in the VMs. The following notation will be used

to describe our method to calculate the mean number of repetitions of the same IP

timestamp of the real machine and the VMs.

ri: number of identical timestamps in the i-th run of a real machine

 (= i-th run length of identical timestamps)

rj: number of identical timestamps in the j-th run of a virtual machine

 (= j-th run length of identical timestamps)

nr, nv : number of runs of repetitions of the same timestamp for a real machine and

 virtual machine, respectively

Rr, Rv : mean run length for a real machine and virtual machine, respectively

tr, tv : mean interval time between successive packets from a real machine and

virtual machine, respectively.

The mean run lengths, Rr and Rv, are calculated formulas follows.

 ,1

r

n

i
i

r n

r
R

r

 .1

v

n

j
j

v n

r

R

v

Then, the mean interval times between packets with consecutive identical

timestamps are
r

r R
t

1
 (millisecond) and

v
v R
t

1
 (millisecond), and the delay time is

Δt rv tt . By delaying all the packet replies for Δt, the peak position in the graph

of the modified run length of identical timestamp packets for a real machine

coincides with the peak position for each virtual machine.

49

However, the rate of the modified mean run lengths will concentrate around

the peak position and the rate in the neighborhood of the peak position will be too

low because this research set the delay to be constant. To avoid such a concentration,

the delay times around 15 ~ 25% of randomly selected identical timestamps in reply

packets are modified to 0 ~ t5.0 and t2 ~ .4 t Prediction that the graph of the

modified mean run a length of identical timestamp packets from the real machine

would almost coincide with those of the VMs was made. The proposed modification

is shown in Figure 12.

The experiments showed that by implementing this technique, IP

timestamps differences for a real machine and VM could be eliminated. That means

the VM and real machines could no longer be distinguished by remotely detecting

their IP timestamps.

Figure 12: Proposed modification technique

50

5.3. Experimental Design and Measurement Methodology

The experiment was conducted on a high-performance Dell Power Edge

server equipped with an Intel Xeon CPU E5-2440. XenServer 6.5 SP1, Oracle

VirtualBox 4.3.12, and VMWare vSphere Hypervisor (ESXi) 5.1.0, all major

commercial hypervisor products, were implemented to host the VM test machines.

Open source Linux Ubuntu 12.04 with 1GB of virtual memory and IDE HDD with

16GB of virtual storage was used as the guest OS in the hypervisors and as the VM

measurement targets. A machine running with Ubuntu Linux as the OS and Intel

Core i3 540 as the CPU with 2.8GB of RAM was used as the real machine

measurement target. A measurer machine was set up to send request packets with

the IP timestamp option to the measurement target machines. The measurement

target machines and the measurer machine were connected to each other via

Ethernet. The experimental environment is shown in Figure 7 in Chapter 3. The

physical experimental environment to obtain IP timestamps characteristic pattern

are shown in Figure 13. Data that was obtained in this experiments were used to

reflect the proposed modification technique to validate if the proposed modification

technique is applicable.

Each VM consisted of the minimum software base of GNU Linux running on

12.04. The utilization of each VM test environment was set up to 80% and more. The

experiments were conducted by sending request packets with the IP timestamp

option enabled in the header after the previous timestamp reply was received by the

measurer machine. Although IP timestamps can be used with any type of IP packet,

this research only explored the attachment of the IP option and sent it with ICMP

packets due to their convenient availability in the Linux ping command. We sent

non-suspicious packets to the target host machine in order to make sure they would

not be dropped or denied by the network or devices.

As many as 1,000,000 packets were continuously sent from the test client

machine to each target machine. The packets were sent from the test client machine

by executing a customized script developed for this experiment. The next request

packet of the client test machine was only sent to the target host once the measurer

machine had received the reply for the previous packet request. The timestamp

51

Figure 13: Experimental environment set up for real machine and 3 VMs

information in the reply packets from the target machine was recorded and

compiled. The IP timestamps were analyzed in decimal units to the nearest

millisecond. Milliseconds was chosen as the unit for analysis as it is the standard

unit for the timestamp in the IP packet [80]. Each target operating system added its

timestamp, and the timestamps in the packets were not affected by the network

until they reached the client machine. Thus, accurate timestamps were obtained

from the target guests.

Finally, the IP timestamp information from the measurement target machines

was analyzed and distribution graphs were plotted in order to observe the

differences between the timestamps of the target guests. After that, this research

implemented timestamp modification technique that proposed in this dissertation

based on the distribution graphs and tested it to confirm its usability. A study by

52

Kohno has proven that the clock skew is independent of the access topology,

regardless of whether the hosts use random or constant IP addresses [16].

Therefore, for these experiments, this research used a controlled environment

with an Ethernet connection in our laboratory to eliminate the network latency

issue. Note that the characteristics of the data might vary from machine to machine,

from one hypervisor technology to another, and with changes in the implementation

environment. Hence, this research plan to conduct more tests in different

experiment environments to get more data with which can improve the

implementation of the modification.

5.4. Data Analysis

The research presented in this paper are an extension to work in [90], [92] for

testing and analyzing the network timestamps discrepancies of major VM products

and thus strengthens contention that timestamps could be used for remotely

detecting VM environments. In this research, non-suspicious packets were sent to

the target host machines in order to make sure the packets would not be dropped or

denied by the network or devices. This research then analyzed the reply packets to

determine whether there were any behavior differences between VMs and real

machines. The results showing that there are indeed such differences supported our

hypothesis that VM environments could be remotely detected by analyzing the

timestamp reply patterns.

This research analyzed the collected data to understand the differences

between the time-stamping behaviors of the target hosts. The timestamps were

extracted from the reply packets from each target host in the test client machines.

Table 7 shows a portion of the IP timestamp data that was collected.

The count information means the sequence of packets sent to the target

machines. The shown sequence runs from the first packet sent, n, until the 20th

packet, n+19. In particular, for the real machine, the timestamps in the first three

reply packets were the same, and those in the next five packets timestamp were also

the same. Figure 14 shows how many times the same timestamps were stamped in

the sequence of reply packets from the target hosts.

53

The percentage of identical timestamps from the real machine is obviously higher

than those from the VM. This behavior occurred throughout the collected IP

timestamp data. Table 8 shows the results of the analysis of all 1,000,000 reply

packets from the real machine and VMs.

Table 7: Portion of collected IP timestamps information

Count
IP Timestamp (millisecond)

Real Machine Xen VirtualBox VMWare

n xxx81920 xxx38539 xxx70653 xxx77867

n+1 xxx81920 xxx38541 xxx70656 xxx77868

n+2 xxx81920 xxx38543 xxx70657 xxx77869

n+3 xxx81921 xxx38546 xxx70658 xxx77869

n+4 xxx81921 xxx38548 xxx70659 xxx77869

n+5 xxx81921 xxx38552 xxx70659 xxx77870

n+6 xxx81921 xxx38553 xxx70660 xxx77870

n+7 xxx81921 xxx38645 xxx70660 xxx77870

n+8 xxx81922 xxx38647 xxx70660 xxx77871

n+9 xxx81922 xxx38650 xxx70661 xxx77871

n+10 xxx81922 xxx38652 xxx70662 xxx77871

n+11 xxx81922 xxx38654 xxx70662 xxx77872

n+12 xxx81923 xxx38656 xxx70663 xxx77872

n+13 xxx81923 xxx38659 xxx70665 xxx77872

n+14 xxx81923 xxx38660 xxx70666 xxx77873

n+15 xxx81923 xxx38663 xxx70666 xxx77873

n+16 xxx81923 xxx38665 xxx70668 xxx77873

n+17 xxx81924 xxx38667 xxx70668 xxx77873

n+18 xxx81924 xxx38669 xxx70669 xxx77874

n+19 xxx81924 xxx38672 xxx70669 xxx77874

54

Figure 14: Analysis of IP timestamp behavior pattern of target machines

in real machine, Xen, VirtualBox and VMWare

Table 8: Percentages of identical IP timestamps for real machine and VM

How many times
the same IP
time-stamp was
stamped

Real Machine
(%)

Xen
(%)

VirtualBox
(%)

VMWare
(%)

1 0.99 98.71 29.52 1.95

2 0.99 0.48 47.37 10.87

3 7.64 0.42 22.21 57.64

4 33.90 0.34 0.80 29.35

5 52.20 0.05 0.04 0.19

6 2.79 0 0.06 0

7 1.49 0 0 0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7

Rate

Count of same timestamps

Timestamps stamping

Real Machine Xen VirtualBox VMware

55

Table 9: Mean number of packets with the same timestamps

Host Real
Machine Xen VirtualBox VMWare

Mean number of repetitions of the
same timestamp in the reply

packets
4.50 1.03 1.95 3.15

 Mean number of repetitions of the same IP timestamps in the reply packets

from the real machine and the VMs was calculated. As shown in Table 9, the mean

values reveal significant differences in the IP timestamp patterns.

The real machine had a mean of almost 4.50 repetitions of the same

timestamp, while the VM target hosts had smaller mean repetition values.

Accordingly, it could be determined that VMs and real machine had

significant differences in their IP timestamp behaviors. These results support this

dissertation hypothesis that since VM packets are handled via hypervisor,

timestamp delays will occur in the reply packets from the VM environment.

Furthermore, as expected, different hypervisor technologies had different

timestamp behavior patterns.

Thus, VMs could be remotely detected by using the IP timestamp pattern

behavior, and each VM technology had its own mean values and pattern of

timestamps. Findings in this research are limited to the testing environments that

were established in a controlled environment. More characteristic of pattern will be

obtained in the future by performing more testing on various machines and

implementation technologies that could be done as future work. The findings will be

recorded and shared for references. Comprehensive framework will be proposed

when enough data could be gathered for more comprehensive analysis.

5.5. Modification of Delay in Real Machine Environment

Numerical experiments were performed to determine the effectiveness of

proposed countermeasure of imposing delays in the real machine in order to

camouflage it within the IP timestamp behavior patterns of the VMs. The

experimental results, shown in Figure 15 (a), (b) and (c), indicated that the real

56

machine could emulate the IP timestamp behaviors of the VMs. Therefore, such a

such a modification could possibly be used as a countermeasure to prevent attackers

or malware from remotely detecting VMs by exploiting the difference in IP

timestamp behavior.

Figure 15 (a). Technique to match IP timestamp behavior of Xen

Figure 15 (b). Technique to match IP timestamp behavior of VirtualBox

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7

Rate

Count of same timestamps

Modified to Xen

Real Machine Xen Modified_Xen

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7

Rate

Count of same timestamps

Modified to VirtualBox

Real Machine VirtualBox Modified_VBox

57

Figure 15 (c). Technique to match IP timestamp behavior of VMWare

5.6. Considerations

In this research, way to determine whether the running environment is a VM

or real one was devised by exploiting the differences between the patterns of

network timestamps and used it to detect the presence of VMs in a cloud computing

environment. In this proposed method, packets that included IP timestamp option

requests were sent from the client test machine to target VM hosts. Packets reply

were collected packets from the target hosts and analyzed as to their behavior.

Pattern of reply of timestamp information from a VM was predicted would be

different from that of a real machine. The reason is that VMs sometimes interrupt

timestamp operations to complete other operations. The time differences in the

timestamps of the reply packets would thus be larger than in a real machine

because a VM sometimes stops operation so that other VMs in the queue can

operate and the VM clocks are managed with a timer device emulation called a VM

switch. In the experiment, the collected IP timestamp data were in milliseconds as

used in the IP timestamp specification.

As per this research hypothesis, the real machine added timestamps more

frequently than the VMs did. The real machine can be camouflaged by making its IP

timestamp reply pattern indistinguishable from those of the VMs. The research

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7

Rate

Count of same timestamps

Modified VMWare

Real Machine VMware Modified_VMWare

58

presented here is an extension of research in [92],[90] to testing and analyzing

major VM products and thus strengthens our conclusions in those papers.

Countermeasure also was proposed wherein the timestamps in the real machine are

modified to match those of the VMs. This countermeasure ensures that the VMs and

real machines in the same cloud can no longer be distinguished by exploiting the IP

timestamp remote detection.

5.7. Concluding Remarks

Building a transparent VM is still a difficult task; the question of how VMs

can be detected is a critical one that requires extensive s research in order to

prevent any security loop holes that could exploit the vulnerabilities of VMs,

including security holes caused by any possible detection method. VM detection is a

prelude to an attack if no countermeasure can be found. Ideally, by analyzing all

possible detection methods, countermeasures could be devised for making VMs more

secure.

This study explored the possibility of such a detection method from the

perspective of detecting the VM’s existence by performing timestamp analysis in full

and para-virtualization using the IP timestamp option. This research shows that

the behavior of IP timestamps in the reply packets from the most popular technique

of choice, i.e., VMWare ESX, VirtualBox, and Xen, could be differentiated remotely

and could be potentially used as a VM detection method. Our findings that

timestamps in reply packs from VMs are different from those of real machines then

were made the basis for a delay mechanism to make timestamps in the real machine

look similar those of the VMs.

This mechanism should make it impossible to detect whether or not the

machine is a VM. In this research, VMs could be detected remotely even when they

were running on a high-performance server with an Intel processor in a

high-performance cloud computing environment was proved. Countermeasure in

which a delay is imposed in the real machine in order to camouflage the IP

timestamp behavior patterns also was proposed.

59

Mobile devices such as smartphones will have other characteristic pattern

and delay also should be implemented in their timestamp stamping operations to

camouflage the existence of a mobile devices environment as well. Proposal of

countermeasure that are made in this dissertation will decrease the chances of

detection that could lead to malicious manipulation of VMs in cloud computing

environment and vice versa and also eliminates a possible attack vector.

60

CHAPTER 6

Characteristic Patterns of Timestamps

from from Android Operating System on

Mobile Device and Virtual Machine

This chapter gives a brief overview of characteristic patterns of timestamps from

Android operating system on mobile device and comparison with VM.

6.1. Overview

In this chapter, the analysis of characteristic patterns of IP and ICMP

timestamps from Android OS running on mobile device and VM environment are

presented. In the experiments conducted, both IP and ICMP timestamps replies

were obtained and compiled. However, the ICMP information was obtained and

compiled only for validation purposes of remote detection using method that was

discussed in [17]. From the experiments, the results showed that the IP and ICMP

timestamps in the same replied packets have the same value, thus only IP

timestamps data were used for further discussion in this dissertation. From the

findings, mobile device and VM environment proven could be distinguished by

examining characteristic patterns of IP timestamps characteristic patterns using

methods that were proposed in this research. Such characteristic could be exploited

by malware in hiding its malicious programs upon detecting the VM environment.

In [92], timestamps behavior for VM hypervisors was checked. In the study,

IP timestamp information received from VMs proven to exhibit different behaviors

compared the IP timestamps from a real machine (PC). In [90], IP timestamp

patterns for the full virtualization hypervisor was proved to show distinguishable

differences between real machines (PC) and VM. On the other hand, in mobile

devices case, timestamp discrepancy could occur due to limited resources such as

processing power in the devices. As the result, bigger different between timestamp

61

tb and timestamp ta could be observed. The comparison of characteristic patterns of

IP and ICMP timestamps for Android OS running on mobile device and VMs are not

addressed comprehensively yet.

Thus in this research, tests were conducted to verify the characteristic

patterns of timestamps from Android OS on mobile device and VMs. Since VMs are

normally operated in high performance machines and mobile devices such as

smartphone are constrained by their limited resources, prediction had been made

that differences of characteristic patterns of timestamps could be observed clearly.

Therefore, by using the characteristic patterns, Android OS on mobile device VM

could be differentiated. Mobile platforms grow increasingly in popularity that

contributes to bigger incentives for attackers. As a result, mobile attack become

rapidly increasing in number and more sophisticated. In this experiment,

information about characteristic pattern of remote detection using IP and ICMP

timestamps as per method that was explained in chapter 3, 4 and 5 were gathered.

In the years where mobile devices are widely being used, malware creator

would want to detect if they are running in mobile environment that still have

minimum security measure implemented to make sure their existence will not be

revealed and they can maximize their benefit from their malicious activity in mobile

device. With the expand usage of mobile phone, the remote detection method of

operating environment could be one great potential of vulnerability in cyber security

attack.

Thus, this study could be considered as study that addresses the security

issue for mobile device that using Android as OS that are most being used. This

study could provide a basic study that could contribute in building the integrated

security solution for smart device which also consider passive remote detection

method of android operating environment that could enable the malware to not

reveal their malicious behavior whenever they are not in android operating

environment to skip the security test such as malware scanning procedure that

majority being implemented in VM environment.

62

6.2. Experimental Environment

In the experiments, packets that request both IP and ICMP timestamps from

measurer machine was sent to the target machines which includes Android OS

operated as emulator in mobile device and VM running Android OS. The

experiments environment to determine characteristic patterns of timestamps from

Android operating system on mobile device and VMs is shown in Figure 16.

 A measurer machine running with open source Linux Ubuntu 12.04 as the

OS and Intel Core i3 540 as the CPU with 2.8GB of RAM was set up to send packets

with the timestamp option to the measurement target machines. High-performance

Dell Power Edge server with Intel Xeon CPU E5-2440 and 2.40 GHz clock speed was

used to host the VM target machine. Major hypervisor products, [93], i.e.,

VMWare[94], Oracle VirtualBox[95] and Xen[96] were implemented in the

Figure 16: Experimental environment for Android OS on mobile device and Android

as emulator in VMs

63

experiments as emulators environment for Android OS. Open source Android

Lollipop 5.0.2 with 1GB of virtual memory and IDE HDD with 16GB of virtual

storage was set up as the Android OS on the VMs and tests were done accordingly.

As for the measurement target mobile device, Android was installed on Sony Xperia

SO-04E and tests were done separately on 4 different Android versions which are

Android Ice Cream Sandwich 4.0.4, Android Jelly Bean 4.2.2, Android KitKat 4.4.4,

and Android Lollipop 5.0.2.

Timestamps request packets were sent from the measurer machine by

executing customized script developed for this experiment. Figure 17 shown the

mechanism of timestamps distribution collection. The measurer machine collects

the timestamps information in the replied packets received from the measurement

target machines. The target machines and the measurer machine were connected

using Wi-Fi that set up in laboratory. C language scripts were written to send

Request timestamps Send timestamps response

 Collect timestamps distribution

Figure 17: Timestamps distribution collection mechanism

64

packets to request for IP and ICMP packets reply with timestamp option from the

client machine to the target machines. In this research, non-suspicious packets sent

to the target machines in order to make sure the packets would not be dropped or

denied by the network or devices. CPU busy ratio of each target machine was set up

and maintained at 80% in order to emulate the normal usage of the machines.

 As many as 1,000,000 packets were continuously sent from the measurer

machine to each target machine by executing the developed C language scripts. The

next packet from the measurer machine was only sent to the target machines once

the measurer machine had received the reply for the previous packet. In the

experiment environment, the timestamps in the packets from the target machines

were not affected by the network until they reached the measurer machine. Thus,

accurate timestamps were obtained from the target machines. The timestamp

information in the reply packets from the target machines were recorded and

compiled. The IP and ICMP timestamps from the compiled data were analyzed in

decimal units to the nearest millisecond. Milliseconds was chosen as the unit for

analysis as it is the standard unit for the timestamp in the IP packet [80]. Also, RFC

792 imposes a 1 milliseconds resolution to the ICMP timestamps and, since we use

active requests for them, sufficient timestamps can be collected in a short amount of

time, which makes the method feasible for fast identification.

The data were analyzed by examining the difference of timestamp between

successive packets that were received from the target machines. This research also

examines deviation of IP and ICMP timestamps in 1 packet. From the analyzed data,

graphs of the timestamps difference in value, rate of the occurrence and IP and

ICMP deviation were plotted to investigate the characteristic pattern differences of

IP and ICMP timestamps from each target machine respectively.

6.3. Limitations

A study by Kohno had proven that the clock skew is independent of the

access topology, regardless of whether the hosts use random or constant IP

addresses [16]. Therefore, for our experiments, this research used a controlled

65

environment that was set up in our laboratory to eliminate the network latency

issue. Note that the characteristics of the data might vary from device to device,

from one VM technology to another, and with changes in the implementation

environment. Latency issue was not addressed in this research. This research

hypothesized that a VM environment could be detected by comparing the behavior

patterns of IP and ICMP timestamps sent from VM target hosts and with the IP

timestamps of mobile devices that are using Android as OS within the same

environment.

6.4. Results Analysis

The collected data was analyzed to understand the time-stamping pattern

behaviors of the target machines. Table 10 shows a sample of a portion of IP and

ICMP timestamp data for the 15 count sequence, from n th to (n+14) th packet.

1,000,000 IP and ICMP timestamp data were collected from all the target machines.

Based on the collected data, the differences of ICMP timestamps value between

(n+1) th – n th were calculated for all the count sequence data. The differences of

timestamps in the sequence were compiled to find the distribution of difference

successive timestamps in order to find the characteristic of the timestamps reply

from the target machines.

 Distribution graphs were plotted in order to observe the differences between

the timestamps of the target machines. Figure 18 (a), (b), (c), (d) are the distribution

patterns of the difference value between the timestamps from the mobile device

target machine on which 4 versions of Android OS are operated and the

reoccurrence rate in the 1,000,000 ICMP timestamp data.

Based on the distribution graph, the peak of reoccurrence rate for timestamp

difference for Android Ice Cream Sandwich 4.0.4 and Android Jelly Bean 4.2.2 is 2

and 3 milliseconds. While for Android KitKat 4.4.4, and Android Lollipop 5.0.2 the

peak is 2, 3 and 4 milliseconds. From this results, This research could observe that

pattern characteristic for 4 versions of Android in Wi-Fi environments are quite

similar, where the peak of reoccurrence rate for the difference of timestamps value

in the sequence are 2, 3 and 4 milliseconds.

66

Table 10: Portion of collected IP and ICMP timestamp information

IP and ICMP timestamp (millisecond)

Count IP Timestamps
ICMP

Timestamps

Difference of
successive

ICMP
timestamps

Different
between IP and

ICMP
timestamps

n 25567551 25567551 Nil Nil

n+1 25567556 25567556 5 0

n+2 25567560 25567560 4 0

n+3 25567566 25567566 6 0

n+4 25567571 25567571 5 0

n+5 25567575 25567575 4 0

n+6 25567579 25567579 4 0

n+7 25567584 25567584 5 0

n+8 25567592 25567592 8 0

n+9 25567595 25567595 3 0

n+10 25567599 25567599 4 0

n+11 25567602 25567602 3 0

n+12 25567605 25567606 3 1

n+13 25567618 25567618 13 0

n+14 25567626 25567626 8 0

67

Figure 18 (a): Timestamp difference distribution of

 Android Ice Cream sandwich 4.0.4

Figure 18 (b): Timestamp difference distribution of

 Android Jelly Bean 4.2.2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 3 5 7 9 11 13 15 17 19 21

Rate

millisec

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 3 5 7 9 11 13 15 17 19 21
millisec

Rate

68

Figure 18 (c): Timestamp difference distribution of

Android KitKat 4.4.4

Figure 18 (d): Timestamp difference distribution of

Android Lollipop 5.0.2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 3 5 7 9 11 13 15 17 19 21
millisec

Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 3 5 7 9 11 13 15 17 19 21
millisec

Rate

69

Figure 19: Timestamps difference distributions for 4 versions of Android

Figure 19 shows the compilation of distribution patterns for all 4 tested

Android versions. The distribution patterns show that all Android versions that

were used in the experiments were not stamping any same timestamp in 1

millisecond time frame. This is due to the mobile device constrain, which are limited

processing power.

Figure 20 shows the compilation of distribution patterns for Android Lollipop 5.0.2

that was installed in the target VMs. It shows the distribution patterns of the

difference between successive timestamps from the VMs target machine and the

reoccurrence rate in 1,000,000 ICMP timestamp data. In Figure 20, observation that

can be made is, the peaks for the reoccurrence rate are at 0 for all the VMs. 70% of

the timestamps from Xen and VMWare have the same value as the timestamps

from the previous sequence packets, where (n+1) th – n th = 0, while 50% of the

timestamps from VirtualBox have the same value as the timestamps from the

previous packets.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7

Rate

millisec

Ice Cream
Sandwich 4.0.4
Jelly Bean 4.2.2

KitKat 4.4.4

Lollipop 5.0.2

70

Figure 20: Timestamps differences when Android installed as emulator

 on different types of VMs

From the distributions graphs in Figure 19 and 20, this research could notice

a compelling different of the characteristic patterns of IP timestamps from Android

OS running on mobile device environment and VMs.

Further data analysis also shows that the data for IP and ICMP timestamps

from the mobile device replicated the phenomenon as per study completed in [17],

where different IP and ICMP timestamps in the same packet could be observed. As

displayed in Figure 21, 3.31% of the packets from the Android KitKat 4.4.4 give

difference value of 1 millisecond between the value of IP and ICMP timestamps in

the same packet. Same characteristic was detected in 2.69 % of the received packets

from Android Lollipop 5.0.2, 2.57 % from Android Ice Cream Sandwich 4.0.4 and

2.21% from Android Jelly Bean 4.2.2.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16 18 20

Rate

millisec

Xen

VMWare

Oracle VirtualBox

71

Figure 21: IP and ICMP timestamps differences for 4 versions of Android

6.5. Concluding Remarks

This research could clearly observe that characteristic patterns of

timestamps from Android OS on mobile device and VMs are distinguishable.

Experiments were conducted to gather and analyze data to determine the difference

of successive ICMP timestamps and reoccurrence rate for timestamp difference for

Android. This research observed that the timestamps differences between

timestamp and the successive timestamps in mobile device are 2, 3 and 4 in 4

versions of Android OSs. Meanwhile, for the latest version of Android OS in major

hypervisor products, experiments conducted in this dissertation found out that the

difference is almost 0 for timestamps differences between timestamp and the

successive timestamp.

The results also showed that IP and ICMP timestamps were deviates for the

timestamps replied from mobile device installed with Android OS. This

characteristic could not be observed in the packets replied from the VMs target

machine because of the high performance machine that used to host VM. Due to this

different in characteristic patterns of IP and ICMP timestamps, this research had

2.57

0 0.01

2.21

0 0

3.31

0 0

2.69

0 00.00

1.00

2.00

3.00

4.00

1 2 3

%

millisec

Ice Cream Sandwich
4.0.4
Jelly Bean 4.2.2

KitKat 4.4.4

72

proved hypothesis that IP and ICMP timestamps pattern characteristic could be

used in detecting either the target machine is running Android on VM environment

or on mobile devices, therefore enabling the detection of VM environment.

 This research also showed that machine performance could be exploited in

detecting the environment in which Android OS is running. Thus, mobile devices

that have limitation in performance need to address this issue which could become

vulnerability for the mobile devices with Android OS.

Wireless local area networks (WLANs) or hotspots [97] or commonly known

as “Wi-Fi” [98] provides a convenient, cost-effective means for network connectivity

in designated areas. With the changing mobile computing landscape that empowers

mobile device users to access on-line on the go through this Wi-Fi., it is vital for

security related studies to be performed in such environment. Concerns regarding

security and privacy with the expanding usage of Wi-Fi discussed in various studies

[99-101].

Furthermore, with the current trend of Bring Your Own Device (BYOD) to

workplace, employees are bringing their personal mobile devices to access

applications and corporate data in the corporate internal network. This could cause

security issue within the corporation. Mobile device could be affected with the

malware or spoofing tools in non-secure Wi-Fi connection and when it access the

corporation environment, malware could start stealing the information within the

corporation [102, 103].

This research had shown that IP and ICMP timestamps could be used in

differencing between Android in mobile device and VM environment. VMs are

normally installed on high performance machine in cloud computing environment

whereas mobile devices have limited resources such as the processing power. Due to

this, it creates different characteristic patterns of IP and ICMP timestamps in the

replied packets from Android OS on mobile device and VMs. This scenario could be

used by malware to differentiate the Android OS running environment.

In such scenario where the infected mobile device is connected to corporate

internal network, the detection method using IP and ICMP timestamps could be

73

used in sniffing the internal network to avoid from infecting Android OS

implemented in VMs while targeting only Android in mobile devices. This could

create security issue within the corporation. Similar method could also be used by

malware in hiding its malicious behavior from being detected by security services

running on VM, for example by connecting to a command and control server and

gathering the IP and ICMP of the running environment.

In conclusion, from results in this research, this study showed that Android

OS running on mobile device could create security loophole that can be exploited by

attackers. Thus as future works in this study, researchers will need to focus not only

developing in VM environment that emulates the Android operating system but also

emulating the special characteristic of mobile devices such as the IP and ICMP

timestamp characteristic pattern that was shown in this research. The gap between

applications running on real machine mobile devices should be addressed by making

the distribution of timestamps characteristic pattern resolved.

Modification in timestamps reply could be implemented for other

environment which is, in this case is VM to meet the characteristic pattern of

timestamps distribution of mobile devices as well. In this mobile device case, when

the distribution patterns for mobile devices proven to be slower compared to the

VMs, the modification that could be implemented in the time-stamping process in a

VMs to create delays in the timestamps in the reply packets are proposed. When the

packets with the IP timestamp option arrive at the VMs, they should delay using

the countermeasure before being forwarded to OS for processing. The delay could be

implemented by adjusting the mean number of repetitions of the same IP timestamp

in the VMs to match those in the mobile devices. This research is proposing the

same method that already being discussed in Chapter 5 could be implemented to

implement the delay to hide this difference.

74

CHAPTER 7

Discussion and Conclusion

This chapter discusses the research flow, experiments towards the hypothesis and

the analysis of the results.

7.1. Discussion and Conclusion

In this research, an analysis was performed to verify the remote detection

method using network timestamps to differentiate the operating environment in

current phenomena of high dependency of computing technologies. The technologies

are based on high performance machine and also mobile devices that have limited

processing power that provides cyber security scenario. This research aims to

validate the applicability of the remote detection method as a potential vulnerability

in cyber security attack. Differentiation of operating environment, either they are

VM, real machine or mobile device become very important because of the growth of

usage of mobile device with seamless interconnectivity. This research contributes to

the new knowledge of characteristic pattern of remote detection of operating

systems using the network timestamps analysis in recent technology scenario. Base

on the characteristic pattern obtain from this research, countermeasure was

proposed to hide the differences observed and this research serves as an initiative in

improving the cyber security that focusing on remote detection of operating systems

using the network timestamps.

Previous work by Kohno [16] highlighted the potential of remote detection

method by using network timestamps. Then, work by Shimamura [17] explored on

characteristic pattern, based on differences between IP and ICMP timestamps in 1

packet. In [17], experiments were done to detect discrepancies of timestamps in two

cases, when ICMP timestamp + 1 < IP timestamp and when ICMP timestamp < IP

timestamp. The experimental results showed that discrepancies occurred only

0.12% from total 1,000,000 packets in the case when ICMP timestamp + 1 < IP

timestamp for real environment. However, for VMs, discrepancies occurred in the

75

range between 0.1% until 0.5% from total 1,000,000 packets. On the other hand, in

the case when ICMP timestamp < IP timestamp, the study found out that 0% of

discrepancies occurred from total 1,000,000 packets from real environment and the

range of 0% until 2.5% of discrepancies occurrence for VMs.

This dissertation validated the remote detection method by using

characteristic pattern differences between IP and ICMP timestamps that proposed

in [17] in current technology scenario which include mobile devices. However, the

experiments result showed that the same result was not reproducible when machine

with higher performance, which is 2.40 GHz clock speed was used as hardware to

host experiments conducted in this research. In [17], machine with 1.86 GHz was

used in the experiments. Since that machines with better CPU performance is

widely being used, new approach is proposed in this dissertation to remotely detect

the operating environment.

In this dissertation, in order to determine the characteristic pattern of

network timestamps which are IP and ICMP timestamps in various environments,

proposal of determining characteristic patterns had been made and method of

analysis as following are being used:

 1) Differences between 2 successive timestamps in the replied packets

 2) How many times identical timestamps was stamped between the packets

 This research explores remote detection method by using characteristic

pattern differences between IP and ICMP timestamps in two measurements

mentioned above and also validate remote detection method by using characteristic

pattern differences between IP and ICMP timestamps that proposed by other

researchers in current technology scenario. This dissertation provides the initial

finding for characteristic patterns for how network timestamps differences in term

of 2 successive timestamps and how many same timestamps stamped could be used.

This dissertation also could serve as the research that ongoing as machines are

improving rapidly in term of performance but little studies had been done to address

this issue.

76

As the flow of this dissertation, firstly, literature review was done to gain

deep understanding regarding the existing issues and in remote detection method of

operating environment. From the literature review, it is understood that there are

substantial motivations of cyber security attacker to detect VM operating

environment in order to make sure that they are not running their malicious

activities in VM environment, which have high potential to implement as security

analysis systems. Thus reducing the possibility for their program to be trapped in

VM-based honeypot and reveals their existence to security analysis system.

Applicability of the remote detection method in simulated environment of

high performance machines compared to the previous machine types that were used

in [17] was revalidated. In this study, high performance machine is defined as high

specifications machines that could be used as a server in cloud computing

environments. The goals and objectives are to investigate the differences in IP and

ICMP timestamps characteristic patterns in different machine and VM technologies.

Experiments were implemented using full virtualization type of VM technologies. In

the case study, this method also was used as well to validate it in real environment

and VM environment. The results and data were analyzed to see IP and ICMP

characteristic pattern differences from the target operating environments.

In this research, all the experiments were conducted in a controlled

environment that was set up in a university laboratory. Focus of the experiment is

to determine the characteristics of the data that might vary from device to device,

from one VM technology to another, and with changes in the implementation

environment. Network latency issue was not addressed in this research. This

research hypothesized that VM environment could be detected by comparing the

behavior patterns of IP and ICMP timestamps in one packet and also in packets

that are continuously sent from client measurement machine to target machines.

The analysis for the characteristic pattern in mobile devices that are using 4

versions of Android were also tested and the findings serve as vital point in remote

detection of mobile devices operating environment. It shows the potential

vulnerability that could be used by attackers and therefore putting in risks the

personal details, data and information that are stored in mobile devices by personal

users and employees in organizations.

77

Experiments were done to validate the scenario for full virtualization

technology using VMWare vSphere, Oracle VirtualBox and Xen Hypervisor in high

performance machine. Timestamps replies that were received at the requesting

machine were compiled to the nearest millisecond. Even in full virtualization VM

case, since there will be VM interface between the CPU and the network interface, it

is expected that there will be a small delay for measurer machine in receiving the

timestamps between the requests. Through the experiments, it was proven that

even though VM are set to imitate the real environment, the technology still unable

to stamp timestamps as per real environment. The experiments result shows that

network stamping deferral behavior still exist and clearly could be observed in

full-virtualization VM target hosts because VM sometimes interrupted timestamp

operations to complete other operations. In the experiments to obtain data for data

analysis, tn was define as the value of IP timestamp of the n times for the packet

replies from the targeted server. Then, the differences of the IP timestamp values

for the tn+1th – tn th was calculated. The differences between tn+1th and tn th

timestamps data were small for the timestamps replied from real machine but

showed negative and large numbers differences for tn+1th and tn th of the

timestamps from the virtual machine, either from both VM Player or Virtual Box. In

contrast, results from real machine environment, the differences between

timestamps stamping were small, 1-digit time difference or less and in most cases,

same timestamp was stamped for more than 2 times continuously. However, in VM,

the differences were bigger because VM operations were switched with other

operations in queue and this affected the VM clock that is managed by timer device

emulation which called as VM switch. Thus, although VM timestamp adjustment

was made to make it look like real environment, the behavior difference still could

be seen between the timestamp due to the operation processes within the VM

technology itself. Therefore, the experiments confirmed that the difference in the

timestamp replies behavior could clearly be seen between the replies sent by real

machine and VM full virtualized environment.

On the other hand, it will not be an issue in real machine since it will only

have CPU and network interface interactions. Hence, from the results that were

obtained from analyzing and comparing the timestamps reply data between full

78

virtualization VM and real machine, as expected the timestamps value from VM

changed more frequently compared to the timestamp replies in real machine. Base

on the observation in full virtualization VM environment that the behavior of

timestamps stamping is different which are, lesser same timestamps were sent in

the replied packets received by the requestor.

Behavior pattern differences had clearly been seen in the experiments. By

comparing the real environment and full virtualization VM environment on the

numbers of how many times the same timestamps were replied in the received

packets, it was shown that, in real machine, more than 60% of the same timestamps

are stamped for 5 times in the continuously replied packets. In contrast, there were

no same timestamps stamped 5 times in the replied packets from VirtualBox and

VMWare ESX. The reason is, VM sometimes interrupted timestamps operations to

complete other operations and make the time taken to complete job longer than real

machine. Even though in full virtualization that simplifies migration and portability,

the remote detection by using IP timestamps packet reply still could be observed

and this could reveal the environment that one system is running on. Based on this

analysis of the results, this research had proven that VM are clearly detectable

remotely by analyzing the replies from IP timestamp request packets in cloud

computing environment. This research contributes to identifying and proved that

distinguishable differences in the timestamp replies from VM and real machines

even in a high performance cloud computing environment exist and need to be

addressed.

This research also investigated and validated the remote detection using the

same method for mobile device that runs on Android OS. In the experiments, major

full virtualization hypervisor products, Oracle VirtualBox, VMWare and Xen were

used as the Android OS emulators. Open source Android Lollipop 5.0.2 with 1GB of

virtual memory and IDE HDD with 16GB of virtual storage was set up as the

Android OS on the VMs and tests were done accordingly. As for the measurement

target in mobile device, Android was installed on Sony Xperia SO-04E and tests

were done separately on 4 different Android versions which are Android Ice Cream

Sandwich 4.0.4, Android Jelly Bean 4.2.2, Android KitKat 4.4.4, and Android

Lollipop 5.0.2.

79

This research posited that using the same remote detection method, by

analyzing the characteristic pattern of IP and ICMP timestamps in one packet and

also in packets that were received continuously from Android OS running on mobile

device, the mobile device could be detected remotely. Mobile devices such as

smartphone are constrained by their limited processing power etc. This research

predicted that timestamps differences in continuously sent packets from mobile

devices could be bigger rather than the timestamps differences of VM running on

high performance machine that this research validated in previous experiments.

Experiments results proven that IP timestamps differences from mobile

device were bigger than those from VM, and this is as per prediction done at the

early stage of research. Characteristic patterns of timestamps from Android OS on

mobile device and VMs are distinguishable. Experiments were done to gather and

analyze data to determine the differences of successive ICMP timestamps and

reoccurrence rate for timestamp difference for Android. Experiments in this

research provide results that the timestamps differences between timestamp and

the successive timestamps in mobile device are 2, 3 and 4 milliseconds in 4 versions

of Android OSs. Meanwhile, for the latest version of Android OS in major hypervisor

products, this research found out that the differences are either 0 or 1 millisecond

for timestamps differences between timestamps and the successive timestamps.

This means that for Android that installed on VMs, identical timestamps was

frequently been stamped. One more thing that could be learned here was that,

during the 3 years of experiments that were done for this research, the VMs

hypervisor technology keep improving and the imitation of real environment in VMs

(VMWare, VirtualBox and Xen) are getting more better compared to 3 years ago

where timestamping pattern differences could be observed more clearly.

The result shows that the data for IP and ICMP timestamps from the mobile

device replicated the phenomenon as per study completed in [17], where different IP

and ICMP timestamps in same packet could be observed. The result shows that

3.31% of the packets from the Android KitKat 4.4.4 give difference value of 1

between the value of IP and ICMP timestamps in the same packet. Same

characteristic were detected in 2.69 % of the received packets from Android Lollipop

80

5.0.2, 2.57 % from Android Ice Cream Sandwich 4.0.4 and 2.21% from Android Jelly

Bean 4.2.2.

From the results analysis, it had shown that IP and ICMP timestamps were

deviates for the timestamps replied from mobile device installed with Android OS.

This characteristic could not be observed in the packets replied from the VMs target

machine because of the high performance machine that used to host VM. Due to this

different in characteristic patterns of IP and ICMP timestamps, this research had

proved hypothesis that IP and ICMP timestamps pattern characteristic could be

used in detecting either the target machine is running Android on VM environment

or on mobile devices, therefore enabling the detection of VM environment.

These results conclude that timestamps reply are strongly related to

performance of the machine that it is operating. The higher the spec of the machine,

the faster timestamps reply will be sent back and more identical timestamps will be

stamped. Mobile device that has limited processing power will be slower in replying

timestamps and will contribute to characteristic pattern of bigger timestamps

differences between the successive timestamps sent through reply packets. The

results exposed the vulnerability of remote detection of android operating system on

mobile devices. This research showed that the limitation of machine performance

could be exploited in detecting the environment in which Android OS is running.

Thus, mobile devices that have limitation in performance need to address this issue

which could become vulnerability for the mobile devices with Android OS.

Likewise, with the seamless internet connection almost everywhere and

wireless local area networks (WLANs) or hotspots or commonly known as “Wi-Fi”

provides a convenient, cost-effective means for network connectivity in designated

areas, means that attacker could manipulate the time frame when the mobile

devices connected to particular network to remotely detect the running environment

and perform malicious activities once they detected that they are not in the VM

environment. This also avoids the risk of them being trapped in potential malware

analysis environments.

As the countermeasure for the timestamps characteristics pattern

differences of VM and real machine, countermeasure in hiding the differences by

81

making modification to the real machines so that similar characteristic patterns of

timestamps as those from VM will be sent in the reply packets is proposed.

Modification implemented in the time-stamping process in a real machine to create

delays in the timestamps in the reply packets.

When the packets with the IP timestamp option arrive at the real machine,

they are delayed using the countermeasure before being forwarded to OS for

processing. The delay is implemented by adjusting the mean number of repetitions

of the same IP timestamp in high performance machine to match those in the lower

performance machine. This modification technique was tested and published in

[104]. Since that, mobile devices are the lowest in machine performance. Mobile

device characteristic behavior should be the bench mark. Thus, proposed delay

countermeasure should be implemented in VM to change the characteristic pattern

for IP and ICMP timestamps reply in VM to close the gap between VM and Android.

7.2. Challenges and Limitations

Several challenges and limitations exist and were discovered while performing

the experiments in this research. This dissertation does not address the latency

issues. This research also does not include the malware analysis using real malware

samples and malware behavior hypothesis made by referencing to literature review.

This dissertation is limited to operating environment remote detection method

using network timestamps. Experiments and analysis were not done in the

operating environment using real malware sample.

7.3. Future Works

As the future works, experiments could be run to identify and analyze malware that

attached to applications installed on a mobile device, and also popular applications

that injected with a malicious code. Then, behavior analysis of this real malware

could be done to determine how the malware behavior changed according to the

running environment. The remote detection method and relationship with malware

82

behavior could be implied in bigger framework during security policy

implementation to avoid cyber security attack by taking consideration of malware

behavior could be different because of the operating environment. The weakest

environment such as, mobile device characteristic patterns should be the

benchmark on how the timestamps characteristic pattern should be, such as mobile

device which was shown in this research. More tests in a different environment

using different machines and different implementation styles and on a grid and

cloud test bed also should be done.

83

Acknowledgments

Alhamdulillah, praise to Allah, the Most Gracious, the Most Merciful.

First and foremost, I would like to address my highest gratitude to my

supervisor for this dissertation, Professor Dr. Toshiyuki Kinoshita and Assistant

Professor Dr. Ryuya Uda for their supervision, guidance, advice and help. They had

supported me throughout this dissertation with their patience and knowledge,

and without their encouragement and effort this dissertation would not have been

completed or written. One simply could not wish for a better or friendlier

supervisor.

I would like to thank my supportive husband, Khairul Khalil Ishak and my

kids, Adam Ariff Khairul Khalil and Hani Erina Khairul Khalil for their endless

support during the duration in preparing this dissertation and also during the

course of my PhD degree program.

I also would like to thank my parents, Mat Razali Jaafar and Anisah Ibrahim,

my father and mother in law, Ishak Surin and Latifah Rauf and may siblings for

their loving support and encouragement.

I also would like to thanks my sponsors, the government of Malaysia, the

Ministry of Higher Education Malaysia and National Defence University of

Malaysia for granting me the scholarship to complete my PhD.

Finally I thank all my friends in Computer Science Program, Graduate School

of Bionics, Computer and Media Sciences, Tokyo University of Technology

especially Hiroshi Maeda, Madoka Shiratori and Itaru Koike that work closely with

me for their support and kindness. I have been blessed with a friendly and

cheerful group of fellow students.

Best Regards,

Noor Afiza Binti Mat Razali

84

85

References

[1] C. Beek, C. Cochin, A. Hinchliffe, J. Jarvis, H. Li, Q. Liu, D. Mandal, M.

Rosenquist, R. Samani, R. Sherstobitoff, "McAfee Labs Threats Predictions

2016", McAfee Labs, 2016

[2] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, "Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing

as the 5th utility", Future Generation Computer Systems vol. 25, pp. 599-616,

2009

[3] M. Nazir, P. Tiwari, S.D. Tiwari, R.G. Mishra, "Cloud Computing: An

Overview, Book Chapter of Cloud Computing: Reviews, Surveys, Tools,

Techniques and Applications", An Open-Access eBook published by HCTL

Open, January 2015

[4] Z. Tari, X.Yi, U.S. Premarathne, P. Bertok, I. Khalil, "Security and Privacy in

Cloud Computing: Vision, Trends, and Challenges", Cloud Computing IEEE,

vol. 2(2), pp. 30-38, 2015

[5] J. Shayan, A. Azarnik, S. Chuprat, S. Karamizadeh and M. Alizadeh,

"Identifying Benefits and risks associated with utilizing cloud computing",

International Journal of Soft Computing and Software Engineering [JSCSE],

vol. 3, no. 3, pp. 416-421, 2013

[6] A. Gupta, C. Milanesi, R. Cozza, C.K. Lu, “Market Share Analysis: Mobile

Phones, Worldwide, 2Q13”, Gartner, 2013

[7] A. Bendovschi, “Cyber-Attacks–Trends, Patterns and Security

Countermeasures”, Procedia Economics and Finance vol. 28 pp. 24-31, 2015

[8] A. Ahmad, S.B. Maynard, S. Park, “Information security strategies: towards

an organizational multi-strategy perspective”, Journal of Intelligent

Manufacturing, vol. 25(2), pp. 357-370, 2014

[9] N. Leavitt, “Malicious code moves to mobile devices”, Computer, vol. 12, pp.

16-19, 2000

86

[10] A. Favell, “96 percent of smartphones and tablets lack necessary security

software. Why it matters to your business – a lot”, 2011, [cited January 2016],

Available from:

https://mobiforge.com/news-comment/96-percent-smartphones-and-tablets-lac

k-necessary-security-software-why-it-matters-to-your-business

[11] R. de Oliveira Albuquerque, L.J.G. Villalba, A.L.S. Orozco, R.T. de Sousa

Júnior and T.H. Kim, “Leveraging information security and computational

trust for cybersecurity”, The Journal of Supercomputing 2015, pp. 1-35, 2015

[12] A. Munshi, P. Dell, H. Armstrong, “Insider threat behavior factors: A

comparison of theory with reported incidents”, Proceedings of the IEEE

International Conference on System Science (HICSS), Hawaii, 2012

[13] A. Mylonas, M. Theoharidou, D. Gritzalis, “Assessing privacy risks in android:

A user-centric approach”, in Springer Risk Assessment and Risk-Driven

Testing, pp. 21-37, 2013

[14] Symantec Corp., “Internet Security Threat Report 2014”, 2016

[15] A. Mylonas, A. Kastania, D. Gritzalis, “Delegate the smartphone user?

Security awareness in smartphone platforms”, Computers & Security, pp.

47-66, 2013

[16] T. Kohno, “Remote physical device fingerprinting”, IEEE Transactions on

Dependable and Secure Computing, vol. 2(2), pp. 93, 2005

[17] M. Shimamura, K. Kono, “Remote Virtual Machine Monitor Detection Using

Network Timestamp,” Information Processing Society of Japan(IPSJ), vol. 50,

no. 8 (Japanese), pp. 1870-1882, 2009

[18] P. Ferrie, “Attacks on more virtual machine emulators”, Symantec Technology

Exchange, pp.55, 2007

[19] A. Ghosh, P.K. Gajar, S. Rai, “Bring your own device (BYOD): Security risks

and mitigating strategies", Journal of Global Research in Computer Science,

vol. 4(4), pp. 62-70, 2013

87

[20] J. Pinchot, K. Paullet, “Bring your own device to work: benefits, security risks

and governance issues”, Issues in Information Systems, vol. 16(3), 2015

[21] S. Abraham, I. Chengalur-Smith, “An overview of social engineering malware:

Trends, tactics, and implications", Technology in Society, vol. 32(3),

pp.183-196, 2010

[22] D. Dagon, T. Martin, T. Starner, “Mobile phones as computing devices: The

viruses are coming”, IEEE Transaction of Pervasive Computing, vol. 3(4), pp.

11-15, 2004

[23] A. Gostev, D. Maslenikov, “Mobile malware evolution: An overview”,

Kaspersky Labs Report on Mobile Viruses, 2006

[24] M. La Polla, F. Martinelli, D. Sgandurra, “A survey on security for mobile

devices”, IEEE Communications surveys & tutorials, vol.15(1), pp. 446-471,

2013

[25] J. Hong, “The state of phishing attacks", ACM Communications, vol. 55(1), pp.

74-81, 2012

[26] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system”, 2008

[27] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, F. Jahanian, “Virtualized

in-cloud security services for mobile devices”, Proceedings of the 1st Workshop

on Virtualization in Mobile Computing, June 2008

[28] I. Burguera, U. Zurutuza, S. Nadjm-Tehrani, “Crowdroid: behavior-based

malware detection system for Android”, Proceedings of the 1st ACM workshop

on Security and privacy in smartphones and mobile devices, pp. 15-26, 2011

[29] F. Liu, P. Shu, H.Jin, L. Ding, J.Yu, D. Niu, B. Li, "Gearing resource-poor

mobile devices with powerful clouds: architectures, challenges, and

applications", IEEE Wireless Communications, vol. 20(3), pp. 14-22, 2013

[30] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, W. Sanders, "Secloud: A

cloud-based comprehensive and lightweight security solution for smartphones",

Computers & Security, vol. 37, pp. 215-227, 2013

88

[31] G. Suarez-Tangil, J.E Tapiador, P. Peris-Lopez , A. Ribagorda, "Evolution,

detection and analysis of malware for smart devices”, IEEE Communications

Surveys & Tutorials, vol. 16(2), pp. 961-987, 2014

[32] T. Garfinkel, M. Rosenblum, “A Virtual Machine Introspection Based

Architecture for Intrusion Detection”, Network and Distributed System

Security Symposium (NDSS), vol. 3, pp. 191-206, 2003

[33] H.J. Liao, C.H.R. Lin, Y.C. Lin, K.Y. Tung, “Intrusion detection system: A

compre-hensive review”, Journal of Network and Computer Applications, vol.

36(1), pp. 16-24, 2013

[34] P. Ferrie, “Attacks on more virtual machine emulators”, Symantec Technology

Exchange, 2007

[35] J.E. Smith, R. Nair, “The architecture of virtual machines", Computer, vol.

38(5), pp. 32-38, 2005

[36] V. Mauch, M. Kunze, M. Hillenbrand, “High performance cloud computing”,

Future Generation Computer Systems, vol. 29(6), pp. 1408-1416, 2013

[37] R. Perez, L. van Doorn, R. Sailer, “Virtualization and hardware-based

security”, IEEE Security & Privacy, vol. 2008 (5), pp. 24-31,2008

[38] M. Armbrust, A. Fox, R. Griffith, A.D Joseph, R. Katz, A. Konwinski, G. Lee,

 D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, “A view of cloud computing”,

ACM Communications, vol. 53(4), pp. 50-58, 2010

[39] S. Shang, S. Zhang, X. Chen, X. Huo, “Cloud computing research and

development trend”, IEEE Second International Conference on Future

Networks (ICFN'10), 2010

[40] P. Mell, T. Grance, “The NIST definition of cloud computing”, pp. 20-23, 2011

[41] R. Buyya, C.S. Yeo, S. Venugopal, “Market-oriented cloud computing: Vision,

hype, and reality for delivering it services as computing utilities”, 10th IEEE

International Conference on High Performance Computing and

Communications (HPCC'08), 2008

89

[42] R. Schwarzkopf, M. Schmidt, C. Strack, S. Martin, B. Freisleben, “Increasing

virtual machine security in cloud environments”, Journal of Cloud Computing,

vol. 1(1), pp. 1-12, 2012

[43] K. Hashizume, D.G. Rosado, E. Fernández-Medina, E.B. Fernandez, “An

analysis of security issues for cloud computing”, Journal of Internet Services

and Applications, vol. 4(1), pp. 1-13, 2013

[44] M. Ali, S.U. Khan, A.V. Vasilakos, “Security in cloud computing: Opportunities

and challenges”, Information Sciences, vol. 305, pp. 357-383, 2015

[45] F. Lombardi, R. Di Pietro, “Secure virtualization for cloud computing”, Journal

of Network and Computer Applications, vol. 34(4), pp. 1113-1122, 2011

[46] H.T Dinh, C. Lee, D. Niyato, P. Wang, "A survey of mobile cloud computing:

architecture, applications, and approaches”, Wireless communications and

mobile computing, vol.13 (18), pp. 1587-1611, 2013

[47] S.A.E.I.D. Abolfazli, Z. Sanaei, M. Sanaei, M. Shojafar, A. Gani. “Mobile cloud

computing: the-state-of-the-art, challenges, and future research” Encyclopedia

of Cloud Computing, Wiley, 2015

[48] A.A. Omella, “Methods for virtual machine detection”, Grupo S21sec, 2006

[49] J. Franklin, M. Luk, J.M. McCune, A. Seshadri, A. Perrig, L. Van Doorn,

“Remote detection of virtual machine monitors with fuzzy benchmarking”,

ACM SIGOPS Operating Systems Review, vol. 42(3), pp. 83-92, 2008

[50] C. Thompson, M. Huntley, C. Link, “Virtualization detection: New strategies

and their effectiveness”, Accessed January 2016:

 http: //www-users. cs.umn.edu/cthomp/papers/vmm-detect-20. 1

[51] Juniper Networks, "Juniper Networks Third Annual Mobile Threats Report,

March 2012 through March 2013", pp.4-6, 2013

[52] Q.U. Bo, X. Wang, K. Sanders, “Detecting malware”, U.S. Patent 9,104,870,

issued August 11, 2015

90

[53] C.H. Smith, K. Maclean, J.J. Liu, S. Mann, M.A.N.N. Wendy, R.Chapin

“System and method for advanced malware analysis” U.S. Patent 9,106,692,

issued August 11, 2015

[54] R. Kozik, M. Choras, “Current cyber security threats and challenges in critical

infrastructures protection”, IEEE Second International Conference on

Informatics and Applications (ICIA), 2013

[55] R. Von Solms, J. Van Niekerk, “From information security to cyber security”,

Computers & Security, vol. 38, pp. 97-102, 2013

[56] M. Hashim, “Malaysia’s National Cyber Security Policy”, 2011

[57] R. Pilling, “Global threats, cyber-security nightmares and how to protect

against them”, Computer Fraud & Security, vol. 2013(9), pp. 14-18, 2013

[58] B. Cashell, W.D. Jackson, M. Jickling, B. Webel, “The economic impact of

cyber-attacks”, Technical Report RL32331, U.S.A. Government and Finance

Division, April 2004

[59] H. Saini, Y.S. Rao, T. Panda, “Cyber-crimes and their impacts: A review”,

International Journal of Engineering Research and Applications, vol. 2(2), pp.

202-209, 2012

[60] J. Hua, S. Bapna, “The economic impact of cyber terrorism”, The Journal of

Strategic Information Systems, vol. 22(2), pp. 175-186, 2013

[61] J.S. Hiller, R.S. Russell, “The challenge and imperative of private sector

cyber-security: An international comparison”, Computer Law & Security

Review, vol. 29(3), pp. 236-245, 2013

[62] A. Razzaq, A. Hur, H. Farooq, Ahmad, M. Masood. “Cyber security: threats,

reasons, challenges, methodologies and state of the art solutions for industrial

applications”, IEEE Eleventh International Symposium on Autonomous

Decentralized Systems (ISADS), pp. 1-6, 2013

91

[63] S. Sicari, A. Rizzardi, L.A. Grieco, A. Coen-Porisini, “Security, privacy and

trust in Internet of Things: The road ahead. Computer Networks”, vol. 76, pp.

146-164, 2015

[64] R. Alur, E. Berger, A.W. Drobnis, L. Fix, K. Fu, G.D. Hager, D. Lopresti, K.

Nahrstedt, E.Mynatt, S.Patel, J. Rexford, “Systems Computing Challenges in

the Internet of Things”, 2016

[65] M. Dawson, J. Wright, M. Omar, “Mobile Devices: The Case for Cyber

Security”, New Threats and Countermeasures in Digital Crime and Cyber

Terrorism, pp. 8, 2015

[66] Lookout Inc, “Enterprise Mobile Threat Report 2016”, 2016

[67] R.P Jover, P. Giura, “How vulnerabilities in wireless networks can enable

advanced persistent threats”, International Journal on Information

Technology (IREIT), vol. 1(2), pp. 145-151, 2013

[68] M.O. Nassar, “Wireless and Mobile Computing Security Challenges and Their

Possible Solutions”, American Scientific Research Journal for Engineering,

Technology, and Sciences (ASRJETS), vol. 3(1), pp. 66-74, 2015

[69] A. Arabo, B. Pranggono, “Mobile malware and smart device security: Trends,

challenges and solutions”, IEEE 19th International Conference on Control

Systems and Computer Science (CSCS), 2013

[70] S. Mansfield-Devine, “Android malware and mitigations”, Network Security,

vol. 2012(11), pp. 12-20, 2012

[71] M. Rahman, B. Carbunar, D.H. Chau, “FairPlay: Fraud and Malware

Detection in Google Play”, SIAM International Conference on Data Mining

(SDM), May 2016

[72] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M.S. Gaur, M. Conti and M.

Rajarajan, “Android security: a survey of issues, malware penetration, and

defenses”, IEEE Communications Surveys & Tutorials, vol. 17(2), pp.

998-1022, 2015

92

[73] A. Karim, S.A.A. Shah, R.B. Salleh, M. Arif, R.M. Noor, S. Shamshirband,

“Mobile Botnet Attacks-an Emerging Threat: Classification, Review and Open

Issues”, TIIS 9, no. 4 , pp. 1471-1492, 2015

[74] P. Far na, E. Cambiaso, G. Papaleo, M. Aiello,“Are mobile botnets a possible

threat? The case of SlowBot Net”, Computers & Security, vol. 58, pp. 268-283,

2016

[75] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L.Rokach, B.Shapira, Y.

Elovici, “Mobile malware detection through analysis of deviations in

application network behavior”, Computers & Security, vol. 43, pp. 1-18, 2014

[76] R. Uda, “Protocol and Method for Preventing Attacks from the Web”, World

Academy of Science, Engineering and Technology, vol.76, pp. 456-460, 2011

[77] M.R. Chouchane, A. Lakhotia, “Using engine signature to detect metamorphic

malware”, Proceedings of the 4th ACM workshop on Recurring Malcode, 2006

[78] D. Perez-Botero, J. Szefer and R.B. Lee, “Characterizing hypervisor

vulnerabilities in cloud computing servers”, Proceedings of the ACM

International Workshop on Security in Cloud Computing, 2013

[79] M. Portnoy, “Virtualization essentials”, John Wiley & Sons, Vol. 19, 2012

[80] Z. Su, “Specification of the Internet Protocol (IP) timestamp option”, 1981

[81] Google Inc, "Developer Android Dashboard",

 URL: http://developer.android.com/about/dashboards/index.html,

 [Accessed: April 2016]

[82] T. Garfinkel, K. Adams, A. Warfield, J. Franklin, “Compatibility is not

transpar-ency: VMM detection myths and realities,” Proceedings of the 11th

USENIX workshop on Hot topics in operating systems, USENIX Association,

pp. 1-6, 2007

[83] K. Miyamoto, H. Tanaka, “Proposal of Effective Detection Method of VMM

without Feature Database”, Information Processing Society of Japan, vol. 52

(Japanese), pp. 2602-2612, 2011

93

[84] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emulators,” in

Springer Information Security, pp. 1-18, 2007

[85] H. Alsaffar, D. Johnson, “Covert Channel using the IP Timestamp Option of

an IPv4 Packet”, in The International Conference on Electrical and

Bio-medical Engineering, Clean Energy and Green Computing, The Society of

Digital Information and Wireless Communication, 2015

[86] M. Cristea, B. Groza, “Fingerprinting Smartphones Remotely via ICMP

Time-stamps”, IEEE Communications Letters, vol. 17(6), pp. 1081-1083, 2013

[87] M-H. Lu, P. Steenkiste, T. Chen, “Video streaming over 802.11 WLAN with

content-aware adaptive retry”, IEEE International Conference on Multimedia

and Expo, 2005

[88] R. Fonseca, G. Porter, R. Katz, S. Shenker, I. Stoica, “IP options are not an

option", Univ. of California, Berkeley, 2005

[89] D. Mills, Network Time Protocol (Version 3) specification, Implementation and

Analysis, 1992

[90] M. Noorafiza, H. Maeda., R. Uda, T. Kinoshita, M. Shiratori, “Vulnerability

Analy-sis using Network Timestamps in Full Virtualization Virtual Machine,”

in 1st International Conference on Information Systems Security and Privacy

(ICISSP 2015), SCITEPRESS Digital Library, 2015

[91] VMware, Inc., “Timekeeping In Virtual Machines”,

 URL:https://www.vmware.com/files/pdf/Time keeping-In-VirtualMachines.pdf,

2011 [Accessed: January 2014]

[92] M. Noorafiza, H. Maeda, R. Uda, T. Kinoshita, “Virtual Machine Remote

Detection Method using Network Timestamp in Cloud Computing,”

International Conference on Information Science and Technology (ICITST), pp.

380-385, December 2013

94

[93] A. J. Younge, R. Henschel, J.T. Brown, G. Laszewski, J. Qiu, G.C. Fox.

“Analysis of Virtualization Technologies for High Performance Computing

Environments”, IEEE International Conference on Cloud Computing

(CLOUD), 2011

[94] M. Rosenblum, “VMWare's Virtual Platform: A virtual machine monitor for

commodity PCs”, 1999

[95] J. Watson, “VirtualBox: bits and bytes masquerading as machines”, Linux

Journal, vol. 166, pp. 1, 2008

[96] P. Barham, “Xen and the art of virtualization,” Proceedings of the 19th ACM

Sym-posium on Operating systems principles, pp. 164-177, 2003

[97] A. Balachandran, G.M. Voelker, P. Bahl, “Wireless hotspots: current

challenges and future directions”, Mobile Networks and Applications, vol. 10

no. 3, pp. 265-274, 2005

[98] N. Piscataway, “Wireless LAN medium access control (MAC) and physical

layer (PHY) specifications”, IEEE P802.11 D3, 1996

95

List of publications that related to this dissertation

Journals

1. M. Noorafiza, K.K. Ishak, H. Maeda, M. Shiratori, T. Kinoshita, and R. Uda,

“Characteristic Patterns of Timestamps from Android Operating System on

Mobile Device and Virtual Machine”, IAENG International Journal of

Computer Science, vol. 43, no. 2, pp. 212-218, June 2016

2. M. Noorafiza, H. Maeda, T. Kinoshita R.Uda, “Virtual Machines Detection

Methods Using IP Timestamps Pattern Characteristic”, International

Journal of Computer Science & Information Technology (IJCSIT) vol. 8, no. 1,

pp. 1-15, February 2016

International Conference Proceedings

1. M. Noorafiza, H. Maeda, M. Shiratori, T. Kinoshita R. Uda, “Vulnerability

Analysis using Network Timestamps in Full Virtualization Virtual Machine”,

in Proceedings of the 1st International Conference on Information Systems

Security and Privacy (ICISSP-2015), pp. 83-89, February 2015

List of publications that published during PhD. candidacy but not

related to this dissertation

Journals

1. T. Kinoshita, M. Noorafiza, K. Katsumata, “Performance Evaluation

Technique for Computer Systems with Finite Input Source,” International

Journal of Computer Applications (IJCA), accepted for publication, 2016

2. J. Ishii, M. Noorafiza, S. Tezuka, R. Uda, T. Kinoshita, “Confidential

Information Poisoning Methods by Considering the Information Length in

Electronic Portable Devices”, Information Processing Society of Japan, vol.54,

no.10, pp. 1-16, October 2013

96

International Conference Proceedings

1. M. Noorafiza, H. Maeda, T. Kinoshita, R. Uda, “Virtual Machine Remote

Detection Method using Network Timestamps in Cloud Computing”,

Proceedings of the 8th International Conference for Internet Technology and

Secured Transactions (ICITST 2013), pp. 380-385, December 2013

2. K. Katsumata, M. Noorafiza, S. Ito, I. Koike, T. Kinoshita, “Queuing Network

Approximation Technique for Evaluating Performance of Computer Systems

Acquiring Different Memory resource with Finite Input Source”, Proceedings

of 31st International Conference on Computers and Their Applications

(CATA 2016), pp. 43-49, April 2016

3. M. Hirose, M. Noorafiza, M. Takaya, I. Koike, T. Kinoshita, “Optimum

Singularity Size in Data Deduplication Technique”, Proceedings of the

International Conference on Scientific Computing (CSC 2015), pp. 101-105,

July 2015

4. M. Hirose, M. Shiratori, M. Noorafiza, R. Tsuboi, I. Koike, T. Kinoshita,

“Queuing Network Approximation Technique for Evaluating Performance of

Computer Systems with Finite Input Source”, Proceedings of the

International Conference on Scientific Computing (CSC 2015), pp. 9-15, July

2015

5. M. Takaya, M. Ogiwara, M. Noorafiza, C. Itaba, I. Koike, T. Kinoshita,

“Queuing Network Approximation Technique for Evaluating Performance of

Computer Systems with Memory Resource used by Multiple job types”,

Proceedings of the International Conference on Parallel & Distributed

Processing Techniques & Applications (PDPTA 2014), pp. 41-46, July 2014

6. M. Noorafiza, I. Koike, H. Yamasaki, A. Rizalhasrin, T. Kinoshita, “Block

Length Optimization in Data Deduplication Technique”, Proceedings of the

International Conference on Scientific Computing (CSC 2013), pp. 216-220,

July 2013

97

7. J. Ishii, M. Noorafiza, S. Tezuka, R. Uda, T. Kinoshita, “Confidential

Information Poisoning Methods by Considering the Information Length in

Electronic Portable Devices”, Proceedings of the 26th IEEE International

Conference on Advanced Information Networking and Applications (AINA

2012), pp. 78-84, March 2012

8. M. NoorAfiza, T. Kinoshita, A. Tanabe, “Queuing Network Approximation

Technique for Evaluating Performance of Computer Systems with Multiple

Memory Resource Requirements”, Proceedings of the International

Conference on Parallel & Distri-buted Processing Techniques & Applications

(PDPTA 2012), pp. 758-763, July 2012

Award

1. Best Paper Award at the 31st International Conference on Computers and

Their Applications (CATA 2016), April 2016.

Paper Title: “Queuing Network Approximation Technique for Evaluating

Performance of Computer Systems Acquiring Different Memory resource

with Finite Input Source”

